数学
高校生
解決済み

マーカーの部分を教えてほしいです。

92 重要 例題 54 1次関数の決定 (2) 関数y=ax-a+30≦x≦) の値域が 1≦y≦b であるとき,定数a, bo 値を求めよ。 CHART SOLUTION グラフ利用 端点に注目 1次関数 y=ax+b というと, α = 0 であるが,単に関数というときは, α=0 の場合も考えなければならない。 基本 この例題では,xの係数がαであるから α>0, a=0, a<0 の場合に分け て, 値域を求める。 ...... 次に,求めた値域が 1≦y≦b と一致するように a,bの連立方程式を作って解く。 このとき,得られたαの値が場合分けの条件を満たしているかどうか吟味する のを忘れずに。 x=0 のとき y=-a+3, x=2のとき y=a+3 [1] YA [1] α>0のとき この関数はxの値が増加するとyの値も増加するから, x=2 で最大値 6, x=0で最小値1をとる。 よって a+3=b, -a+3=1 1 これを解いて a=2, b=5 これは, α>0を満たす。 a+3 0 2 x x [2] a=0 のとき この関数は y=3 定数関数 このとき, 値域は y=3であり、1≦y≦bに適さない。 [3] α <0 のとき 31. この関数はxの値が増加するとyの値は減少するから, x=0 で最大値 6, x=2で最小値1をとる。 ba+3 よって -α+3=b, a+3=1 これを解いて a=-2,6=5 これは, a<0 を満たす。 1 a+3 0 2 [1]~[3]から (a,b)=(2,5),(-2,5) PRACTICE・・・ 54 ③ (1) 定義域が −2≦x≦2, 値域が −2≦y≦4 である1次関数を求めよ。 (2)関数y=ax+b (b≦x≦b+1)の値域が-3≦ys5であるとき、定数a, bo 値を求めよ。 (3)関数y=ax+b (1≦x≦3)の最大値が最小値の2倍であり、グラフが点 (1,2 を通るという。 定数a, b の値を求めよ。

回答

✨ ベストアンサー ✨

こんにちは!
簡単な解説を添付いたしましたのでご確認ください。
分からない部分、読めない部分等ありましたら遠慮なく仰ってください🙇‍♂️

もな

理解出来ました!ありがとうございます❕

この回答にコメントする
疑問は解決しましたか?