学年

教科

質問の種類

数学 高校生

高一数学です。(4)と(5)がわかりません。 4は頂点のy座標が正であるからの後に出てきたマイナス4a分のb2乗-4acは一体なんですか?? その後の(1)よりの説明もよくわかりません。 5はa-b+cはなぜx=-1のときの値だとわかるんですか?

りするとき すいミスをい にしておき 1/2 {}中の 基本 例題 52 2次関数の係数の符号とグラフ 2次関数y=ax2+bx+c のグラフが右の図で与えら れているとき,次の値の符号を調べよ。 (1) a (2) b (4)62-4ac (5) a-b+c (3)c 00000 A AR x MOITUJO TRE p.91 基本事項 4 基本 51 97 CHART & THINKING グラフから情報を読み取る ミス 式の値は直接求めることができない。 「上に凸か,下に凸か」, 「軸や頂点の位置」, 「軸との交点の位置」 などに着目して, 式の値の符号を調べよう。 上に凸か, yA 下に凸か? 頂点の座標は? x=-1 における 3章 10 y 座標は? 7 x 軸との交点の 位置は? |軸の 位置は? 関数とグラフ ax² + bx + c = a(x+2)² - b²-Aac b 62-4ac 4a よって, 放物線y=ax2+bx+c の軸は 直線 x=-- 62-4ac 頂点のy座標は 4a る。 b ←ax2+bx+c =alx'+ = a(x²+x)+c 2a' b y軸との交点のy座標はcであ 400 =a 2a {(x+2)-(2)+c b 2a 3(x+2)-a (20)²+c b 62 また, x=-1 のとき y=a(-1)2+6(-1)+c=a-b+c -a(x+2)- 2a 62-4ac (1) グラフは上に凸の放物線であるから a<0 4a b 平 b (2) 軸が x<0 の部分にあるから <0す。 ↓ 2a ->0 2a (1)より, a<0 であるから b<0 (3) グラフがy軸の負の部分と交わるから c<0 62-4ac (4) 頂点のy座標が正であるから ->0 4a (1)より, a < 0 であるから -(b2-4ac)<0 すなわち b2-4ac > 0 (5) a-b+c は, x=-1 におけるyの値である。 y>0 ←放物線 y=ax2+bx+c について, x軸と異なる2点で交 わる⇔ b2-4ac > 0 が成り立つ (p.139 以降 を参照)。 グラフから,x=-1 のとき すなわち a-b+c>0 PRACTICE 52Ⓡ 右の図のような2次関数y=ax2+bx+c のグラフについて, 次の値の正.0.負を判定せよ。 (1) a (4)62-4ac (2) b (3)c (5) a+b+c (6) a-b+c 0 1 x

解決済み 回答数: 1
数学 高校生

波線のとこってどういうことですか?

礎問 141 3点が一直線上にある条件 AOAB の辺 OA, OB上に点C,D, OC:CA=1:2 OD:DB=2:1 となるようにとり, ADとBCの交点をEとす るとき 次の問いに答えよ. (1) AE:ED=s : (1-s) とおいて, OE を s, OA. OB で表せ (2) BE:EC=t (1-t) とおいて, OE を t, OA, OB で表せ. (3) OE OA, OB で表せ. 精講 ベクトルの問題では, 「点= 2直線の交点」 ととらえます。だから問 題文に「交点」という単語があれば,そこに着目して数式に表せばよ 00~+40- いのですが,このとき, 「3点が一直線上にある条件」 が使われます. <3点 A, B, C が一直線上にある条件〉 同じ立し 50+70- I. Aが始点のとき AC=AB II. A以外の点□が始点のとき □C=m□A+nB (ただし, m+n=1) 口のs (1-s), (2) のt: (1-t) のところは =(1-s) OA+sOB (2) OE-(1-t)OB+tOČ (3) = (1-1)OB+t(OA) -++-0A+(1-1)OB WOONE SH <3点 B, C, Eが直 線上にある条件 QA+0, OB 0, OAXOB (1)(2)より t 1-s = 1/1314-1- 3-35=t ..... ①, 4/23s=1-t......② ①×3+② より 3 0 2 1-1-s D E1 A B -OÉ を2通りに表し 比べる -ポイント 25:33 7 3s=1 6 S=7 8/17 になる 5-3-37 OE=OA+++OB OA0, OB=0, OAXOB だから」のところは, 「OA と OB は 1次独立だから」と書いてもかまいません。 (2) を使わずに(1) だけでも答えがだせます. OE=(1-s)OA+/3sOB=3(1-s)OC+'sOB 3点B, E, Cは一直線上にあるので 3(1-s)+/23s=1 6 とBCの交点をE」という文章を A, E, D は一直線上にある B, E, Cは一直線上にある かえて, II を利用していることになります. ,この手法では同じベクトルを2通りに表し,次の考え方を使います。 1,60,xのとき(このときは1次独立であるといいます) a+qb=p'a+q'b=p=p', q=q' 解答 ポイント 100,ax のとき 演習問題 141 pã+qb=p'ã+q'b⇒p=p', q=q' △ABCにおいて,辺AB を2:3に内分する点を D, AC 4:3に内分する点をEとし, 直線 BE と直線 CDの交点をP

解決済み 回答数: 1
数学 高校生

フヘホについて質問です。3枚目の解答で210となっているところは√nが入ると思ったので10にしたのですが、なぜ違うかがわかりません。

293 太郎さんのクラスでは、確率分布の問題として、2個のさいころを同時に 投げることを 72回繰り返す試行を行い、2個とも1の目が出た回数を表す確 変数Xの分布を考えることとなった。 そこで 21名の生徒がこの試行を行った。 (1)次は二項分布 (アイ) に従う。このとき、k-アイ 123 とおくと,X=yである確率は,P(X=r)=C,D(1-0) エオ (r=0, 1, 2, k)である。また,Xの平均(期待値)はE(X) EX 標準偏差は (X)= である。 カ 解答群 0 k r ① ktr ② k-r (2)21 名全員の試行結果について、2個とも1の目が出た回数を調べたところ。 次の表のような結果になった。 なお、5回以上出た生徒はいなかった。 回数 0 1 2 3 4 計 人数 2 7 7 3 2 21 この表をもとに、確率変数 Y を考える。 Yのとり得る値を 0, 1,2,3,4と し、各値の相対度数を確率として, Yの確率分布を次の表の通りとする。 Y 0 1 2 3 4 計 P 21 22 1-3 13 2-2 ス シ 21 このときの平均はE(Y)= セン タチ 標準偏差は (Y) = √530 である。 21 (3)太郎さんは,(2)の実際の試行結果から作成した確率変数の分布について。 (1)のように、 その確率の値を数式で表したいと考えた。 そこで, Y=1, Y=2 である確率が最大であり,かつ,それら2つの確率が等しくなっている 確率分布について先生に相談したところ、その代わりとして、新しく次のよ うな確率変数Z を提案された。 先生の提案 Zのとり得る値は 0, 1, 2, 3, 4であり,Z=rである確率を P(Z=r)=α- (r=0, 1, 2, 3, 4) r! とする。ただし、を正の定数とする。 また,r=(x-1) 2-1 であり、 0!=1,11=1, 2!=2,31=6, 4!=24 である。

解決済み 回答数: 1
数学 高校生

(3)のマーカーしてある部分がなぜそうなるのか分かりません。教えていただきたいです。

6 第6章 場合の数 301 Step Up お互いに身長の異なる8人を, 山の形に整列させる. i番目に並ぶ人の身長をん とし 一 番高い人をん (2≦k≦7) 番目に配置することにすると,これを数式で表記すれば、 h₁<h₂<<hr hr>...> he である. このとき, 以下の問いに答えよ. ただし, "Co+m+,C2+....+,C=2" が成 り立つことを用いてもよい。 (1) k=3 となる並べ方は何通りあるか答えよ. (2) 2≦k≦7 に対して, 並べ方は全部で何通りあるか答えよ. (3)n(n≧3)人を同様に整列させるとき, 2≦k≦n-1 に対して, 並べ方は全部で何通り あるか答えよ. 8人を身長の低い順に, 1, 2, 3, ..., 7, ⑧とする. (1) k=3 というのは、3番目に⑧がきていて, となる場合である. をみると 左の2つの△△は、7人から2人を選び,身長の低い 順に並べて、右の5つの□□□□□は、残りの5人を身 長の高い順に並べるので, C2=21(通り) (2) たとえば,k=2のときだと, 1AO で、△は7人から1人を選び, 6つの□には身長の高い 順に並べるから、 C7(通り) というようになっている. したがって,まとめると, k=2,3,4,5,6,7 に対し ⑧の左の△のところに, 7人から1人、2人,3人, 4人,5人,6人を選び, 身長の低い順に並べることにな あるので, 7C1+7C2+7C3+7C4+7C5+7C6 △△に入れる2人を選べば、 条件を満たす並べ方は1通り に決まる。 太 章末問題 &&& 同人) 6 (表)の通り ST(S) ={7C0+(7C1+7C2++7C6)+7C7}-(7C0+7C7) 3)=2'-2 KnCo+nCi+....+nCn=2" を 2乘出る利用。なお,この等式は、数 126 (通り) (高液る食 器 (3)人を身長の低い順に, ① ② ③, ... (2)と同様に,たとえば, k=2のときだと で,これは, (n-2)人 k=3のときだと, 棚の持ち とする 学で学習する二項定理を用 いて導くことができる。 (U) 0-0x2=1 (通り) 次の確率を求め、島 (n-1) 人から を除く 歌中1人を選ぶ。 以 △△□□□ 「目の出方は全部(n-3) 人 で,これは, n-1 (通り) したがって, 並べ方は全部で, n-Ci+n-1C2+n-1C3 ++n-1Cn-2 =-Cot-Ci+n-Cotto - Cn-2) +-- 2-1-2 (通り) △△に⑦を除く (n-1) 人か ら2人を選び, 身長の低い順 に並べる. —(n-Cotn-Cn-i) | Yeti のり

解決済み 回答数: 2