数学
高校生
解決済み

波線のとこってどういうことですか?

礎問 141 3点が一直線上にある条件 AOAB の辺 OA, OB上に点C,D, OC:CA=1:2 OD:DB=2:1 となるようにとり, ADとBCの交点をEとす るとき 次の問いに答えよ. (1) AE:ED=s : (1-s) とおいて, OE を s, OA. OB で表せ (2) BE:EC=t (1-t) とおいて, OE を t, OA, OB で表せ. (3) OE OA, OB で表せ. 精講 ベクトルの問題では, 「点= 2直線の交点」 ととらえます。だから問 題文に「交点」という単語があれば,そこに着目して数式に表せばよ 00~+40- いのですが,このとき, 「3点が一直線上にある条件」 が使われます. <3点 A, B, C が一直線上にある条件〉 同じ立し 50+70- I. Aが始点のとき AC=AB II. A以外の点□が始点のとき □C=m□A+nB (ただし, m+n=1) 口のs (1-s), (2) のt: (1-t) のところは =(1-s) OA+sOB (2) OE-(1-t)OB+tOČ (3) = (1-1)OB+t(OA) -++-0A+(1-1)OB WOONE SH <3点 B, C, Eが直 線上にある条件 QA+0, OB 0, OAXOB (1)(2)より t 1-s = 1/1314-1- 3-35=t ..... ①, 4/23s=1-t......② ①×3+② より 3 0 2 1-1-s D E1 A B -OÉ を2通りに表し 比べる -ポイント 25:33 7 3s=1 6 S=7 8/17 になる 5-3-37 OE=OA+++OB OA0, OB=0, OAXOB だから」のところは, 「OA と OB は 1次独立だから」と書いてもかまいません。 (2) を使わずに(1) だけでも答えがだせます. OE=(1-s)OA+/3sOB=3(1-s)OC+'sOB 3点B, E, Cは一直線上にあるので 3(1-s)+/23s=1 6 とBCの交点をE」という文章を A, E, D は一直線上にある B, E, Cは一直線上にある かえて, II を利用していることになります. ,この手法では同じベクトルを2通りに表し,次の考え方を使います。 1,60,xのとき(このときは1次独立であるといいます) a+qb=p'a+q'b=p=p', q=q' 解答 ポイント 100,ax のとき 演習問題 141 pã+qb=p'ã+q'b⇒p=p', q=q' △ABCにおいて,辺AB を2:3に内分する点を D, AC 4:3に内分する点をEとし, 直線 BE と直線 CDの交点をP

回答

✨ ベストアンサー ✨

一次独立のときのみでしか係数比較をできないのでその条件を言っています。その条件がなくても一次独立より  で大丈夫です。
一次独立とは簡単に言えば平行ではない二つのベクトルのことです。詳しくは一次独立で調べてみて下さい

この回答にコメントする
疑問は解決しましたか?

この質問を見ている人は
こちらの質問も見ています😉