学年

教科

質問の種類

数学 高校生

1枚目の下から3行目以降がどうしてそうなるのか分かりません。至急、教えて頂きたいです!🙇🏻‍♀️🙇🏻‍♀️

0がと をもつときを考 第4問 (1) 1日で売れる量は 1/12 Mで2日目 3日目は売れた分の精肉を仕入れるだけ でよいから, a1= M より a2=M- - M = M a3=M-12M=12M また、3日目の閉店後に1日目に仕入れた精肉は廃棄されているが, 2日目 3 日目に仕入れた精肉はそれぞれ (1/2) 12-1/M a2= + = +M だけ残っているから ・M a₁ =M-(M+M)- M +e+ (+) (+ そして,(n+2) 日目の開店時に用意されている精肉は日目に仕入れた精肉が (1/2) an= = 1/an (n+1)日目に仕入れた精肉が であり、 (+)-1 2 an+1 (n+2) 日目に仕入れた精肉が an+2 日 量 であり、その量の合計はMであるから 10 = 60 an+2+1/12/2 1+1/an=M an+1+ ① が成り立ち 同様に an+1=M が成り立つから,② ① より =0 さい解をも であることか an+3 1/14n+2-1/14n+1-1/80 an=0 an+3= 12/24n+2+1/21an+1+1/an これる。 すなわち ③より an+3= 1/an+/12/2(an+2+1/21ant1+1/8am) an+M G+3-M-(-4M) an+3 であり,Cm=am-M とおくと Arte Cn+3=1/28cm であるから, 自然数kに対して C3k-2 は k-1 k-1 C₁ = ゆえに .6- ② Y<X 1部) .0% ①を利用して +2 +1 を 消去する方針。 方程式 1/11+1/Mの 解は、x= =Mである。 この式の形から「C1, Ct, ...」, 「C2,C5,…」「3, 6, ...」 のそれぞれについて考える必 要がある a-a-M-M

解決済み 回答数: 1
数学 高校生

(1)(2)ともにまったく分からないので教えてください!

[大] 大] 重要 例題 9 二項定理の利用 (1) 101 ' の下位5桁を求めよ。 (2)2 00で割った余りを求めよ。 CHART & THINKING のののの 23 基本 (1),(2) ともに, まともに計算するのは大変。 (1) は,次のように変形して、 二項定理を利用する。 1011= (100+1)100= (1+102) 100 展開した後, 各項に含まれる 10 に着目し, 下位5桁に関係する箇所のみを考える。 (2)も二項定理を利用するが,どのようにすればよいだろうか? →900=302 であることに着目し,2930-1 と変形して考えよう。 解答 (1) 1011=(100+1)100= (1+102) 100 =1+100C1・102+100C2・10+100C3・10°+100C4・10°++10200 =1+100C1・102+100C2・10+10%(100Cs+100C4 ・ 102 +... +10194) ここで, a=100C3 +100C4・102 +…+10194 とおくとaは自然数で 101100 = 1+10000 + 49500000 +10°α =10001+49500000 +10°a =10001+105(495+10a) 10 (495+10a) の下位5桁はすべて 0 である。 よって, 101100 の下位 5桁は 10001 (2) 2945(30-1)45=(-1+30)45 =(-1)^5+45Ci (−1)44・30+45C2(-1)43・302+45C3(-1)42・303 ■■ 1章 1 3次式の展開と因数分解,二項定理 分散式は、 +…+45C44(-1)・304+3045 第3項以降の項はすべて 302=900で割り切れる。 また,(-1)45=-1, -1) =1であるから -1+45・1・30=1349=900・1 +449 よって, 2945 を900で割った余りは 449 大←第1項と第2項の和は 900 より大きい。 計算への応用 INFORMATION 上と同じ考え方で, 複雑な計算を暗算で行うことができる。 例えば,9992 は 9992=(1000-1)=1000000-2000+1=998001, 4989×5011 は 4989×5011=(5000-11)×(5000+11)=50002-11=25000000121=24999879 と計算 できる。

回答募集中 回答数: 0
数学 高校生

この問題の2枚目の式のところの7m+7の7の部分はどこに行ったのでしょうか?誰か解説してくださるとありがたいです、よろしくお願いいたします🙇

36 (104) 第1章 数 列 例題 B1.50 数学的帰納法 (3) 命題の証明 **** ”を2以上の自然数とするとき、パー"が7の倍数であることを数字を 帰納法によって証明せよ. 考え方 n-nが7の倍数 n-n=7×(整数) となる.このことを数学的帰納法を使って証明する. 解答) nin.......① とおく. (I) n=2 のとき, n-n=27-2 =126=7・18 よって, n=2のとき ① は7の倍数である. (II)(2)のとき ①が7の倍数であると仮定す ると, k-k=7m(m は整数) とおける. (日本女子大) 例 2以上の なので、最初の 2である. 考 このとき, n=k+1 のときの (k+1)-(k+1)が7 の倍数であることを示す. (k+1)^-(k+1) =k+Ck+C2k+7C3k+7C4k³+7C5k²+7C6k +1 -(k+1) (k+1)^(k+1) =7X (整数) となることを示 k-kは仮定より 7の倍数, =k+7k+21k+35k+35k+21k2+7k-k =(k-k)+7(k+3k + 5k+5k+3k+k) =7m+7(k+3k+5k+5k+3k+k) =7(m+k+3k+5k+5k+3k+k) ここで,m+k+3k+5k+5k+3k+k は整数なの で, (k+1)-(+1) は7の倍数である. 7(k+......)も 7の倍数 したがって, n=k+1 のときも①は7の倍数である. (I),(II)より,2以上のすべての自然数nについて ① は 7 の倍数である. Focus 自然数nに関する証明に数学的帰納法は有効である 注》整数αの倍数は,n (整数) を用いてan と表せる。 「αで割り切れる」 「α を約数にもつ」 「an と表せる」 となる. すべての自然数nについて, 22+6n-1 で割り切れることを証明せよ。

解決済み 回答数: 1