学年

教科

質問の種類

数学 高校生

なぜ実数解をrとおくのでしょうか? xのまま計算にはいるのはダメなのでしょうか??

第2章 高次方程式 **** 例題 42 係数に虚数を含む2次方程式の解 xの2次方程式(1+i)x2+(a-i)x+2(1-ai) = 0 が実数解をもつとき、 実数の定数aの値を求めよ.また,そのときの解をすべて求めよ. (慶應義塾大) 考え方 係数に虚数を含むので、判別式は使えない. 実数解をrとすると,もとの2次方程式は, (1+i)r²+(a − i)r +2(1-ai)=0 この左辺を A+ Bi=0 (A,Bは実数) の形に変形すれば A=0, B=0 である. (p.81 「複素数の相等」参照) 解答 この2次方程式の実数解を x=y とすると, ________________(1+i)r²+(a − i)r +2(1—ai)=0 30 (2²+ar+2)+(r²-r-2a) i=0$04 r, a は実数だから, Fod r2+ar +2=0 ………① r²-r-2a=0 ①② より (a+1)r +2(1+a)=0 (a+1)(r+2)=0 •2 Its =(8+)-1- したがって, (i)a+1=0 つまり, a = -1 のとき ① に代入すると, r2-r+2=0 ここで, 判別式 D=(-1)2-4・1・2=-7<0 rは実数であるから,不適 (ii) +2=0 つまり,r=-2のとき ①に代入すると これは②も満たす このとき, 与式は, a +1 = 0 または r+2=0 したがって, よって, (i), (ii) より, (1+i)x²+(3-i)x+2(1-3i)=0 (x+2){(1+i)x+(1-3i)}=0 x=-2, 1+2i ESA0 a=3, そのときの解 x = -2, 1+2i 100 + 4-2a+2=0 より,ca=3 <複素数の相等> A,Bが実数のとき バ A+ Bi=0 ⇔ A=0, B=0 実部と虚部に分ける. r²+ar+2, r²-r-2a は実数 a b が実数のとき, a+bi=0 ⇔a=0,b=0 a との連立方程式 r2 を消去して次数を下げ 実際に解くと, [~_=1±√7i それぞれの場合について、 もとに戻って調べる. r=-2 つまり 左辺は x+2を因数にもつ. 2 (1+i)x+(1-3i)=0 (1+i)x=-1+3i |-1+3i=1+2i x=- LI

未解決 回答数: 1
数学 高校生

46. x^2-mx+p=0の式にx=γを代入していいんですか? x^2-mx+p=0に代入できるのはαとβだけではないのですか?

78 重要 例題 46 2次方程式の解と係数の関係と式の値 00000 2次方程式x2-mx+p=0の2つの解をα, βとし, 2次方程式x-mx+q=00 2つの解を y, 8 (デルタと読む)とする。 (1) (y-a)(y-β) を p, g を用いて表せ。 1.7235 (2)か,gがxの2次方程式x²(2n+1)x+n²+n-1=0の解であるとき, (r-a)(y-B)(8-α) ( 8-β) の値を求めよ。 おまいられ」とい 基本41,44) INTLU 指針解と係数に関係した問題では,次の3つ (互いに同値) を使い分けることが重要。 ① 2次方程式 ax2+bx+c=0の2つの解がα, B 32SUUS [2]_a+B==b, aß= [3] ax²+bx+c=a(x-a)(x-B) (1) (y-a)(y-B) の式を導きたいから,x-mx+p=(x-a)(x-β)であることを利用し て考える。 (2)(1) と同様に,(ô-α) (8-B) をp, gで表し,解と係数の関係を利用。 解答 (1) α,β は x-mx+p=0の2つの解であるから この等式の両辺にx=y を代入して -(1-we) x2-mx+p=(x-a)(x-β) Most cesty また, yはx-mx+g=0の解であるから r²-my+q=0 ゆえに stuc-vs+x(1-4)²+x=9 e-my+b=(y-a)(y-B).... ①ヶ靴代媛因覧でただ1 p+g=2n+1, pg=n²+n-1 (p−q)²=(p+q)²− 4pq 指針の3 を利用。 よって e-my-my を消去。 ① に代入して (r-a)(r-B)=p-q (2)もx-mx+g=0の解であるから, (1) と同様にしてーーーー (8-α)(8-B)=p-q 21st (1 よって (r−a)(r—B)(8—a)(8−ß)=(p−q)² ここで, b, g は x2 - (2n+1)x+n²+n-1=0の解であるか ら, 解と係数の関係により =(2n+1)²−4(n²+n−1)=5 よって (y-a)(y-B) (8-α) (8-B)=5 #(1=Y)&- etviv (1) のyを8におき換える だけで、まったく同じこと がいえる。 (パーズ指針の ② を利用。 ◄(p−q)²=p²-2pq+q² FU=(p²+2pq+q²)-4pq =(p+q)²—4pq

未解決 回答数: 1
数学 高校生

放物線とx軸の共有点の位置の問題ではD(判別式)、軸、f(k)の3つが重要だと習いました。 なぜこの問題はf(k)だけで解決するのですか? また、括弧でくくった2行の文章は問題文を繰り返しているだけのように感じたのですが、 『題意を満たすためにはf(-1)f(0)<0..... 続きを読む

196 基本例題 126 2次方程式の解と数の大小 (2) 00000 2次方程式 ax^²-(a+1)x-a-3=0が-1<x<0, 1<x<2の範囲でそれぞれ1 つの実数解をもつように,定数aの値の範囲を定めよ。 会 p.191 基本事項① 重要 127 指針f(x)=ax²-(a+1)x-a-3(a≠0) としてグラ フをイメージすると, 問題の条件を満たすには y=f(x)のグラフが右の図のようになればよい。 すなわち f(-1) f(0) が異符号 [f(-1)(0)<0] かつf(1) f (2) が異符号 解答 f(1)=a・12-(a+1)・1-a-3=-α-4, f(2)=a・22-(a+1)・2-a-3=a-5 f(-1)f(0) < 0 から (a-2)(-a-3)<0 (a+3)(a−2)>0 ゆえに よって また, f(1)f(2)<0から a<-3, 2<a (-a-4) (a-5) <0 (a+4) (a-5)>0 [f(1)f(2)<0] である。αの連立不等式を解く。 smetalle CHART 解の存在範囲 f(pf(g) < 0 ならgの間に解 (交点) あり ゆえに よって ① ② の共通範囲を求めて a<-4,5<a [a>0] f(x)=ax²-(a+1)x-a-3 とする。 ただし, a≠0 (笑) | 2次方程式であるから、 題意を満たすための条件は, 放物線y=f(x) が-1<x<0, (x2の係数) 0 に注意。 1<x<2の範囲でそれぞれx軸と1点で交わることである。 すなわち f(-1)f(0)<0 かつ f(1)f(2)<0 ここで f(-1)= a (-1)²-(a+1)•(-1)-a-3=a-2, f(0)=-a-3, ① a<-4,5<a ...... ②② これはα≠0 を満たす。 y=f(x) + 20 1 10 -1 2x e [a<0] 20 0 y=f(x) + [注意] 指針のグラフからわか るように, a>0 (グラフが下 に凸), a<0 (グラフが上に 凸) いずれの場合も f(-1)f(0) < 0 かつ f(1)(2)<0 が,題意を満たす条件である。 よって, a>0のとき, a<0 のときなどと場合分けをし て進める必要はない。

未解決 回答数: 0
数学 高校生

解答を見ずに解くとそれなりに答えと近い回答が導き出せたのですが、これは偶然なのか、それともどこか私の導く中で間違ってる箇所があるのかどっちなんでしょうか?

重要 例題 127/ 2次方程式の解と数の大小 (3) 00000 方程式x2+(2-a)x+4-2a=0が-1<x<1の範囲に少なくとも1つの実数解 をもつような定数aの値の範囲を求めよ。 基本125,126 指針 [A] -1<x<1の範囲に, 2つの解をもつ (重解を含む) [B] -1<x<1の範囲に, ただ1つの解をもつ ような場合が考えられる。 [B] の場合は,解答の [2]~[4] のように分けて考える。 例題125, 126 同様, D, 軸, f() が注目点である。 ****** 解答 判別式をDとし, f(x)=x2+(2-a)x+4-2a とする。 f(-1)=-a+3, f(1)=-3a+7 [1] 2つの解がともに -1<x<1の範囲にあるための条件は D=(2-a)²-4-1-(4-2a) ≥0. ① 2-a 220 について-1<2< 2 軸x=- lf(-1)=-a+3 > 0 ③ f(1)=-3a+7> 0 ①から よって (a-2)(a+6)≥0 a²+4a-1220 ゆえにa≦-6, 2≦a... ⑤ ②~④を解くと, 解は順に -1 0<a<4 ...... ⑥, a <3 ©, a< ² 3 ****** ⑤~⑧の共通範囲は2≦a</1/27 ① [2] 解の1つが-1<x<1, 他の解がx<-1または1<xにあ るための条件はf(-1)f(1)<0 : (a+3) (-3a+7) < 0 よって (a-3) (3a-7) <0 ゆえに 17/0<a<3 1 [3] 解の1つがx=-1のときは f(-1)=0 よって -a+3=0 ゆえに a=3 このとき, 方程式は x2-x-2=0 ∴. (x+1)(x-2)=0 よって,他の解はx=2となり、 条件を満たさない。 ① [4] 解の1つがx=1のときは /S(1)=0 ........... よって |-3a+7=0 このとき, 方程式は 3x²-x-2=0 よって,他の解はx=- 12/3 となり、条件を満たす 。 [1]~[4] から2 2≦a <3 =/333 ④ [2] ゆえに a= | [1] .'. (x-1)(3x+2)=0 + 2) JE 1 x 軸 -6 または D-0/ [3]=3 [4] o=33 V N 6 D>0 + [4] [1][2]- -5- 0 2734 3 a 3 a [1], [2] で求めたαの値の範 囲と, [4] で求めたαの値を 合わせたものが答え。 197 3章 13 2次不等式

回答募集中 回答数: 0