学年

教科

質問の種類

数学 高校生

⑴なのですがaの範囲を求めに行く過程で模範解答とは違って判別式を使ってときました。答えは合っているのですが考え方として合っているのか心配です。判別式で解いても問題ないのでしょうか。またこの答え方で減点なく丸が貰えますか。この二つ、よろしくお願いします。

演習 例題 131 2つの2次関数の大小関係 (1) 00000 2つの2次関数f(x)=x2+2ax+25,g(x)=-x2+4ax-25 がある。 次の条件が 成り立つような定数αの値の範囲を求めよ。 (1) すべての実数xに対してf(x)>g(x) が成り立つ。 (2)ある実数xに対してf(x) <g(x) が成り立つ。 基本115 f(x うな ((1) 指 指針 y=f(x), y=g(x) それぞれのグラフを考 えるのではなく,F(x)=f(x)-g(x) とし, f(x), g(x) の条件をF(x) の条件におき 換えて考える。 (1) y=f(x) y=F(x) (1) すべての実数xに対してf(x)>g(x) すべての実数xに対してF(x)>0 y=g(x)/ + (2) (2)ある実数xに対してf(x)<g(x) y=f(x) y=F(x) ⇔ある実数xに対してF(x) <0 大 このようにおき換えて, F(x) の最小値を 考えることでαの値の範囲を求める。 小 y=g(x) O [補足] 例題 115 で学んだように, 判別式D の符号に着目してもよい。 F(x)=f(x)-g(x) とすると 解答 F(x)=2x2ax+50=2(x-2) - 10/27 +5 - 0²- 50 (1) すべての実数xに対してf(x)>g(x)が成り立つことは, すべての実数xに対してF(x)>0, すなわち [F(x) の最小値] > 0 が成り立つことと同じである。 F(x)はx=1/2で最小値 a² 2 +50 をとるから a² - +50> 0 よって1012+5 - よって (a+10)(a-10)<0 ゆえに -10<a<10 (2)ある実数xに対してf(x) <g(x) が成り立つことは, ある実数xに対してF(x) < 0, すなわち [F(x)の最小値] <0 が成り立つことと同じである。 a² +50<0 晶検討 「ある xについて が成り立つ」と は よって a<-10, 10<a ゆえに (a+10)(a-10)>0 を満たす が少なくとも1つ あるということ である。 ④ 131 つような定数kの値の範囲を求めよ。 練習 2つの2次関数f(x)=x2+2kx+2, g(x)=3x2+4x+3がある。 次の条件が成り立 (1) すべての実数xに対してf(x) <g(x)が成り立つ。 (2)ある実数xに対してf(x)>g(x)が成り立つ。

解決済み 回答数: 1
数学 高校生

この問題でグラフを書くとなっているのですが 3次関数のグラフって書けますか?だいたいって感じですか? 微分してもうまくいかなくて💦 簡単なグラフだったらすみません、、

0000 広めよ。 めよ。 (2)東京電機大 245 246 重要 257 係系に注意 YA 2 151 BA 基本 251 3次曲線と接線の間の面積 「もの面積Sを求めよ。 393 00000 曲線y=x-5x2+2x+6とその曲線上の点(3, -6) における接線で囲まれた図 | 指針 面積を求める方針は 1 グラフをかく ・基本 248 250 重要 252 2 積分区間の決定 ③上下関係に注意 また、積分の計算においては,次のことを利用するとよい。 本間では,まず接線の方程式を求め, 3次曲線と接線の共有点のx座標を求める。 3次曲線y=f(x)(x3の係数がα) と直線y=g(x) がx=αで接するとき、等式 f(x)-g(x)=a(x-a)(x-β) が成り立つ。 y=3x²-10x+2であるから, 接線 の方程式は 解答 ERUT SU (-6)=(3・32-10・3+2)(x-3) 曲線 y=f(x) 上の点 (α, f(a)) における接線 の方程式は y-f(a) f'(a)(x-a) 0 すなわち y=-x-3 3 0 x 2 線の概形について _342 参照。 ここで 値を求める必要は この接線と曲線の共有点のx座標 は,x-5x2+2x+6=-x-3の解 である。 -6 これからx-5x2+3x+9=0(*) ゆえに (x-3)(x+1)=0 よって x=3,2-10 y=x-4xにつ =x(x+2)(x-2) 由との交点のx座 x=0, ±2 線 y=3x2 は原点 する, 下に凸の放 したがって図から,求める面積は S={(x-5x2+2x+6)-(-x-3)}dx =S(x-3)(x+1)dx 左辺が (x-3) を因数に もつことに注意して因数 分解。 1-5 3 93 3-6 -9 1 -2 -3 23 1 33 03 1 1 0 ( 7 7章 回新 =S,(x-3)"{(x-3)+4}dx=S{(x-3)"'+4(x-3)")dx(xa)(x-3) x- 4 13 313 -3) 3- +4 3 -1 -64+- == 256 64 3 = =(x-2)^{(x-2)-(B-α)} 3 f(x-a) dx= (x-a)*+1 n+1 +C m 積

解決済み 回答数: 1
数学 高校生

こういう問題で両辺を🟰でつなげて Xで割って判別式を用いるのはだめなんですか?

332 重要 例題 208 2曲線が接する条件 解答 00000 2曲線 y=x-2x+1とy=x2+2ax+1 が接するとき, 定数αの値を求めよ。 また、その接点における共通の接線の方程式を求めよ。 指針 「2曲線が接する」 とは, 2曲線が1点を共有し,かつ, 共有点 における接線が一致することである (この共有点を2曲線の接 点という)。 2曲線y=f(x),y=g(x)がx=pの点で接するための条件は 接点を共有する f(b)=g(b) 〔接線の傾きが一致する f(b)=g' (b) f(x)=x-2x+1,g(x)=x2+2ax+1 とすると f'(x)=3x2-2, g'(x) = 2x+2a 2曲線がx=pの点で接するための条件は 基本20420 △判別式は 使える EXE ② 130 曲線 つし の方 ③ 131 座 の 2次方程式 132 E Af(p)=g(p) よって ②から 2a=3p2-2p-2 f(p)=g(p), f'(p)=g'(p) p3-2p+1=p2+2ap+1 ① 32-2=2p+2a 2. (3) 条件 f'(p)=g'(p) 接点を共有する 接線の傾きがー これを①に代入して p3-2p+1=p²+(3p²-2p-2)p+1 致する条件 αを消去する。 ゆえに p²(2p-1)=0 よって p=0, 2 9 ③から =0のときa=-1,=123のとき a=- 8 133 曲線y=f(x) 上の点 x=pにおける接線の方程式は y-(p³-2p+1)=(3p²-2)(x-p) グラフは,次のようにな 0=(S-) る。 すなわち y=(3p2-2)x-2p³+1. ゆえに, 求める接線の方程式 は a=-1(p=0)のとき a=-1のとき +a=1のとき 134 yy=f(x) ya `y=f(x)/ (1- y=-2x+1 a=- 9 11/12 (11/12) のとき y=-2x+4 5 3 10/10 ty=g(x) 羽 (1) 2曲 0 1 3-4- x 0 18 1 1 12 y=gl 117 HIN 共通な

解決済み 回答数: 3