学年

教科

質問の種類

数学 高校生

103.2 記述に問題点等ありますか?

と 素 のの 参照。 倍 や 考え さ の はる 去は、 音数 され 本書 数は して、 含め ・35 きる = 5.7 基本 例題 103 約数と倍数 は0でない整数とする。 a, a 1①1) 1/14/0 a がともに整数であるようなαをすべて求めよ。 とんがともに3の倍数ならば, 7a-46も3の倍数であることを証明せよ。 (2) a (③) a が6の倍数で,かつaが6の約数であるとき,aをbで表せ。 「αが6の倍数である」ことは,「6がαの約数である」 ことと同じであり,このとき, 整数kを用いて a=bk と表される。このことを利用して解いていく。 (1) αは5の倍数で,かつ40の約数でもある。 解答 (1) が整数であるから, αは5の倍数である。 ゆえに, って 40 40 8 a 5k k 40 が整数となるのはんが8の約数のときであるから a k = ±1, ±2, ±4, ±8 α=5kと表される。 を整数として したがって α = ±5, ±10, ±20, ±40 (②) a,bが3の倍数であるから,整数k, lを用いて 0 a=3k, b=3l と表される。 よって 7-46=7・3k-4・3l=3(7k-4l) 7k4lは整数であるから, 7a-4bは3の倍数である。 (3) a が6の倍数, αが6の約数であるから, 整数k, lを用いて a=bk, b=al と表される。 a=bk をb=al に代入し, 変形すると b=0であるから (検討 これは 誤り! b(kl-1)=0 kl=1k,lは整数であるから a=±b したがって 00000 p.468 基本事項 ① k=l=±1 bαの約数 a=bk Laは6の倍数 < =k(kは整数)とおい 5 てもよい。 < α = 5k を代入。 負の約数も考える。 <a =5kにkの値を代入。 整数の和差積は整数で ある。 α を消去する。 k,lはともに1の約数であ る。 上の解答の で, lを用いずに, 例えば (2) で α=3k, b=3k のように書いてはダメ! これでは α = bとなり, この場合しか証明したことにならない。 α, 6は別々の値をと のようにk, Z (別の文字) を用いて表さなければならない。 る変数であるから, 練習 (1) 2つの整数 α, bに対して, a=bk となる整数kが存在するとき, bla と書く 103 ことにする。 このとき, a 20 かつ2αであるような整数α を求めよ。 証明せよ。 ただし, a, b, c, d は整数とする。 倍数ならば, ' + 62 は8の倍数である。 とげcdはabの約数である。 469 4章 7 約数と倍数 最大公約数と最小公倍数 17 5 O" ON YO 3 7 し

回答募集中 回答数: 0
数学 高校生

80.2 「線分ABの垂直二等分線lに関してAと同じ側にあって、直線AB上にない1点をPとすると」 というこの文章からどうやって解答のような図を想像するのですか??

C ・C は は い 値 三角形の辺と角の大小 基本 例題 80 (1) ∠C=90°の直角三角形 ABCの辺BC上に,頂点と異なる点Pをとると, AP <ABであることを証明せよ。 (②) 線分ABの垂直二等分線ℓに関してAと同じ側にあって,直線AB上にな 1点をPとすると, AP<BP であることを証明せよ。 p.425 基本事項 ② 針三角形において,(辺の大小) (角の大小)が成り立つことを利用する。 (1) AP <AB の代わりに∠B<∠APB を示す。 2つの三角形△ABP と APC に分け て考える。 (2)(1) と同様に,∠PBA <<PAB を示すことを目指す。 l と線分PBとの交点をQとす ると,AQABは二等辺三角形であることに注目。 635 THOSE A CHART 三角形の辺の長さの比較 角の大小にもち込む 解答 (1) △ABCは∠C=90°の直角三角形 であるから ZB<ZC ① △ABP においてBC ∠APB=∠CAP + ∠ C > <C 1 ①② から ∠B << APB」 よって AP <AB (2) 点P, B は l に関して反対側にあるから,線分 PB は ℓ と交わる。その交点を Q とすると, Qは線分PB 上にある (P,Bとは異なる)から <PAB> ∠QAB AQ=BQ また,Qは上にあるから ゆえに ① ② から すなわち よって ... (2) 練習 B P .…..... ∠QAB=∠QBA ∠QBA < ∠PAB ∠PBA <<PAB AP<BP 15* (FOTO)< A ∠C=90° であるから ∠A<90° ∠B <90° 検討 三角形の2辺の大小 上の例題 (2) の結果から, △ABCの2辺AB, ACの長さの大小は,辺 BCの垂直二等分線を利用して判定できることがわかる。つまり 辺BCの垂直二等分線l に関して,点AがBと同じ側にあれば, ABACである。 ∠APB は APCの外角。 C 80+0T+TA ∠B<<C<∠APBから ∠B <∠APB XOL (2) Ado OTAN A B P je M B C wie 200 18 (1) 鈍角三角形の3辺のうち, 鈍角に対する辺が最大であることを証明せよ。 BCの中点をMとする。 AB AC のとき, ∠BAM < ∠CAM p. 429 EX56 427 章 2 三角形の辺と角 12 る 2- $2 た 1数 こ 1 るを O ni 4234

回答募集中 回答数: 0
数学 高校生

右側のステップ4のx=aを代入するとのところからわかりません

第6章 微分法と積分法 第3節 積分法 8-1 定積分の定義 定積分 ●定積分とは| ② グラフy=f(x)とx軸、y軸、y軸に平行な直線で囲まれた部分の 面積は、関数f(x)とどのような関係にあるか? f(x)=1 f(x)=x f(x)=x+1 f(x)=x² f(x)=x³ を求める計算! y=f(x), x軸で囲まれた 10~xの面積 横 C te² 1/2x2x 1/3x ² 3 ●積分と微分の関係 ? a≦x≦bの範囲でf(x)≧0のとき一簡単にするため y=f(x)、x軸、x=a、x=bで 囲まれた部分の面積Sを求めよう! step. 1 αからxまでの面積をS(x) とする。 S(th) O ol a y 2 求める面積を微分すると、 関数f(x)になる y=f(x)のグラフで囲まれた面積を計算するときは、 微分の逆をする x x 1x S(xXx) 積分する x+1 xh S(b)=S b S(2ch) step. 2 xからx+hの間で、f(x)の最大値をM (x,f(x)) 最小値をm とする y=f(x) step.3 aubの面積 右の図より、 mh≤S(x+h)-S(x) ≤Mh S(x+h)-S(x) -SM h h→0のとき ms. (f(x)] [5'(x)] よって step.4 境界線を横行すると面積この逆 両辺をxで不定積分すると、 $CON S(x)=f(x)dx=F(x)+C x=a を代入すると よって f(x) [S'(x)=f(x) 面積を微分すると. 境界線になる S(a)=F(a)+C 0=F(a)+C C=-F(a) S(x)=F(x)-F(a) 範囲a~b ※f(x)を積分して、それに を代入したものから (x) x を代入したものを 引いてね、という記号 S(x+h) -S(x) ※F(x) という数に x=0を代入したものから a x ↑ ●定積分の定義と記号 <定積分の定義> F'(x)=f(x)のとき f(x)dx=[F(x]=F(b)-F(a) を代入したものを 引いてね、という記号 x+h すなわち m W 9 x=bを代入すると x+h S(b)=F(b)-F(a) S=F(b)-F(a) [[例13] 面積Sは、こうやって 計算することができる! ※ただし、 20に限る 14 a x=aからx=bまで 関数f(x) をxで 定積分する、という

回答募集中 回答数: 0