学年

教科

質問の種類

数学 高校生

この辺の根本的な考え方から分かりやすく教えてもらえませんか。むらさき線のところが特に分からないです。Oでかこっているのは全部1ミリも分からないです。

に (1) 5. B 1 1 (1) DE//BCより AE DE D M AC BC 3 2 よって, BC=6(cm) 9 BC XC (2) ∠ABC= ∠ACD 02 2=α×4より,216a y=ax2 のグラフが、 点A(4,2)を通るから、 <BAC= ∠CAD (共通) より, 2組の角がそれぞれ等しいので △ABC∽△ACD よって, AB: AC=AC: AD 6AD=9 6:3=3 3 よって,a= 1/2 である。 AB=OB だから,△OABはAB=OB の二等辺 三角形である。 OA の中点をM (21) とすると, OBMは直 角三角形であるから OB2 = OM2+MB2 B(0, b) とすると, OB2=62 OM2+MB2=22+12+22+(b-1)2 =62-26+10 よって、62=62-26+10 これを解いて.6=5 よって、Bのy座標は5である。 J (2) ∠OBAの二等分線を1とすると, 1 は線分 OA の中点M(2,1) を通る。 よって、この傾きは-2である。 したがって, AD=2 (cm) (3)底面積は, 4×4=16 (cm²) 高さは, 体積は,1/23> -×16×3=16 (cm3) (4) BD=3cm, ∠ADB=90° だから, 三平方の定理より, AB2=32+42=25 AB>0より, AB=AC=5(cm) (5) 弧 BC に対する円周角より ∠BAC = ∠BDC=65° ∠AEB=180°(65°+15°)=100° また,切片が5より1の式は,y=-2x+5である。 (6) 11/113 π33=36 (cm3) πC (3)点Cは,y=1/2x2のグラフ上にあるから, c(t, 1/2)とおける。 2 (1) △ABCとAED において さらに,点Cは1上にもあるから, t=-2t+5 8 これより, =-16t+40 t²+16t-40=0 が成り立つ。 <BAC= ∠EAD (共通) 仮定より ∠ABC=∠AED ①,②より 2組の角がそれぞれ等しい △ABC∽△AED よって AB AE = AC: 6:AE=5:3

回答募集中 回答数: 0
数学 高校生

この辺の根本的な考え方から分かりやすく教えてもらえませんか。むらさき線のところが特に分からないです。Oでかこっているのは全部1ミリも分からないです。

に (1) 5. B 1 1 (1) DE//BCより AE DE D M AC BC 3 2 よって, BC=6(cm) 9 BC XC (2) ∠ABC= ∠ACD 02 2=α×4より,216a y=ax2 のグラフが、 点A(4,2)を通るから、 <BAC= ∠CAD (共通) より, 2組の角がそれぞれ等しいので △ABC∽△ACD よって, AB: AC=AC: AD 6AD=9 6:3=3 3 よって,a= 1/2 である。 AB=OB だから,△OABはAB=OB の二等辺 三角形である。 OA の中点をM (21) とすると, OBMは直 角三角形であるから OB2 = OM2+MB2 B(0, b) とすると, OB2=62 OM2+MB2=22+12+22+(b-1)2 =62-26+10 よって、62=62-26+10 これを解いて.6=5 よって、Bのy座標は5である。 J (2) ∠OBAの二等分線を1とすると, 1 は線分 OA の中点M(2,1) を通る。 よって、この傾きは-2である。 したがって, AD=2 (cm) (3)底面積は, 4×4=16 (cm²) 高さは, 体積は,1/23> -×16×3=16 (cm3) (4) BD=3cm, ∠ADB=90° だから, 三平方の定理より, AB2=32+42=25 AB>0より, AB=AC=5(cm) (5) 弧 BC に対する円周角より ∠BAC = ∠BDC=65° ∠AEB=180°(65°+15°)=100° また,切片が5より1の式は,y=-2x+5である。 (6) 11/113 π33=36 (cm3) πC (3)点Cは,y=1/2x2のグラフ上にあるから, c(t, 1/2)とおける。 2 (1) △ABCとAED において さらに,点Cは1上にもあるから, t=-2t+5 8 これより, =-16t+40 t²+16t-40=0 が成り立つ。 <BAC= ∠EAD (共通) 仮定より ∠ABC=∠AED ①,②より 2組の角がそれぞれ等しい △ABC∽△AED よって AB AE = AC: 6:AE=5:3

回答募集中 回答数: 0
数学 高校生

青い丸のとこについて質問です。M(a)−m(a)がaの関数とかかれていますが、M(a)やm(a)自体もaの関数ですよね?初歩的な質問で申し訳ないです。回答お願いします。

Date 7 2次関数の最大・最小/定義域が一定区間 - αを定数とする. 2次関数y=x-2ax+3の0≦x≦2 における最大値 M (α) を,最小値をm(4) とする.M(a), m(a)を求めよ. またM(a) -m (α) の最小値を求めよ. (類摂南大) y=d(x-p)+qのグラフ YA d<0 平方完成 2次関数の値の変化の様子をとらえるには, y=d(x-p2+qの形 (平方完成) にすることが絶対的であって (が1か所にしか登場しないので, 関数値の変化の様子がよく 分かるようになる) 関数値は YA d>0 d0....... |-plが大きいほど大きくなる d<0......x-pが大きいほど小さくなる というように変化することが分かる. q O p x 2 100 最大 最小 下に凸(2次の係数が正)の場合、区間α≦x≦ßにおける最大・最小は下のよう。 al m(a け 最大はこれらを使って y=f(x) (軸) ① (軸) ② ④ ⑤ 6 最大 : 最大 最大: 最小 最小 最大: (7) 最小 X x 84 a B α ẞx a β x 最小はこれらを使って a β a B a Bx aβ a+β 区間の中点 2 最小値は,対称軸が区間内であれば頂点のy座標 (上図②), なければ対称軸に近い方の端点のy座標 である (1,③) 最大値は, 対称軸から遠い方の端点のy座標, つまり対称軸が区間の中点より左側に あればf (B) (④ ⑤), 右側にあればf (α) (⑥ ⑦) である. 解答量 f(x)=x-2ax+3 ⑦ とおくと,f(x)=(x-a)-α+3であるから, y=f(x)のグラフは下に凸で,軸はx=αである. 区間 0≦x≦2における最大値は, 区間の中点がx=1であることから, a≦1 のとき,M(α)=f(2)=-4a+7 (アに代入した) 1≦αのとき,M(a)=f(0)=3 また,0≦x≦2における最小値は,軸が区間に入るかどうかに着目して, 0≦a≦2のとき,m(a)=f(a)=-α+3 a<0 のとき,m(a)=f(0)=3 2<a のとき, m(α)=f(2)=-4a+7 以上からM(a), m(a), M(a)-m(α) は次のようになる。 直線 b=-4a+4 64 [注] M(a), m (α) はαで表され ることから,M(α) -m (a) は a の関数と見ることができる. 軸と区間の中点の位置関係で場 合分けする (上図 ④と⑤のケース と, ⑥と⑦のケースとで場合分 け). 上図の② ①③で場合分けする. mayの場合分 直線 b=4a-4 [0≤a≤2 けは,a≦0 12≦a a M(a) m(a) M(a)-m(a) a<0 -4a+7 0≤a≤1 -4a+7 3 -a²+3 -4a+4 (a-2)² 1≦a≦2 3 - a²+3 2<a 3 -4a+7 a² 4a-4 b=a2 b=(a-2)2 b=M(a)-m(a)のグラフは右図のようになるから, a=1のとき最 としてもよい 境界のα=0, 2 では2つの m(α) の式で通 用し,同じにな るかでミスを 2 a チェックでき

解決済み 回答数: 1
数学 高校生

(1)についてで、Xを消去する時消去する文字Xについての範囲だけを考慮すれば良いと思っていました。しかしこの問題で、Xを消すとyの範囲も消えてしまったのですが、消す以外の文字の範囲についても引き継ぎを気にする必要があるのですか?解答よろしくお願いします。

XX 例題 267 面積[7] ・・・円と放物線で囲まれた部分 ★★★☆ 放物線y=x2. ① と円 x+(y-α)2 = 1 ... ② は異なる2点で接する。 (1) 定数α の値を求めよ。 (2)②の外側で,放物線①と円 ②で囲まれた部分の面積Sを求めよ。 (1)円と放物線が接する条件は, 例題 111 参照。 思考プロセス y (2) SS(ロロ)dxとしたいが, 円 ②はy=±√1-x+α となり,積分計算できない。 見方を変える A A Q PQ P Q P Q Action» 円と曲線で囲まれた部分の面積は,まず中心角を求めよ y+(y-α)2=1 例題 111 よって y2-(2a-1)y+α°-1 = 0 ... (3) 解 (1) ① ② より, xを消去すると 今回 ①と②が異なる2点で接するのは,③が正の重解をも つときである。 3 ③の判別式をDとすると D=0 P197 D={-(2a-1)}-4(α-1)= -4a +5 次数が低くなるようにx を消去する。 yを消去し て考えることもできる。 例題 111 〔別解 1)参照。 SID=0 かつ f(y) = y2-(2a-1)y+d-1 の軸の直線 54 れる 5 -4+5 = 0 より a = 4 3 9 このとき ③は v+ = 0 と 2 16 3 これは正の重解y= をもつから a= 4 3 (2) y= 4 ①に代入すると 3 x=± 2 ないよって、接点P,Qの座標は y 2a-1 y = > 0 から 2 αの値の範囲を求めても よい。 実際に 「正の」重解に なることを確かめる 181 √3 3 しな 2 √3 3 2 4 2 3 4 5-4 A 4 A √√3 3 S = 4 あり、②の中心をAとすると ∠PAQ = 120° したがって, 求める面積Sは x²)dx-(7.12. 60°- P √3 32 2 √3 x 2 ∠PAO=60° より ∠PAQ = 120° P 120° 1 Q · 1². sin 120° 360° 2 ① ② √3 π /3 2 3√3 π 3 4 4 ■267 放物線y = x2 ・・・ ①と円x2+(y-2 (1) 定数αの値を 1 2点で接する。

解決済み 回答数: 1