学年

教科

質問の種類

数学 高校生

数1の質問です! tに置き換えて範囲を求めるところで sin、cosをそれぞれどのように考えているのかを 分かりやすく教えてほしいです!! よろしくお願いします🙇🏻‍♀️՞

補充 例題 119 三角 0°180°のとき, y=sin'+cos 0-1 の最大値と最小値を求めよ (s) [釧路公立大 基本 60,112, 重要 そのときの0の値を求めよ。 CHART & SOLUTION aa 三角比で表された2次式 1つの三角比で表す 定義域に注意 前ページと同様に考える。 ①yの式には sin (2次) とcos (1次) があるから, 消去するのは sin である。 かくれ 件 sin'0+cos'01 を利用して,yを cos だけの式で表す。 ② cose をでき換える。 このとき, tの変域に注意。 cos0=t とおくと,0°≦0≦180°のとき -1st ま ③yはtの2次式 - → 2次関数の最大・最小問題に帰着(p.109 参照)。 で解決。 答 sin20+cos20=1より, sin'=1-cos' であるから 2 次式は基本形に変形 最大・最小は頂点と端点に注目 40'aie-1-0 2000 102000 =0nied+(0'nia-D)S sino を消去。 y=sin20+ cos 0-1=(1-cos²0) + cos 0-1812020 =-cos20+cose cos0=t とおくと,0°0≦180°から -1≤t≤1 ...... ① を tの式で表すと 満たすらを y=-f+t=- ①の範囲において,y はのは 24 基本形に変形。 -1 1 最大 41 1 01 1-2 t= で最大値 0800- 4x=1 頂点 t=-1で最小値-2をとる。 0° 0≦180°であるから 最小-2 端点 よって t=1/2となるのは、COS=1/2から t=-1 となるのは, cos0=-1から 0=60° 0=180° 0=60°で最大値 1/10=180°で最小値 -2 ◆三角方程式を解き 値、最小値をとる からの値を求める PRACTICE 1196 2001-20 08120>0SI

解決済み 回答数: 1
数学 高校生

少数のグラフはどうやって作るんですか?

462 基本 例題 71 標本平均の確率分布 00000 11,2,2,3の数字を記入した5枚のカードが袋の中にある。これを母集団 とし、無作為に大きさ2の標本X1, X2 を復元抽出する。 標本平均 X の確率 分布を求めよ。 CHART & SOLUTION p.459 基本事項 21 MOITUJO TRANS 標本平均は、標本の選び方によって値が変化する。 大 →標本の大きさを固定すると,標本平均Xは1つの確率変数となる。 確率を求めるときは、 同じ数字のカードは区別することに注意。 X1, X2のとりうる値とそ のときのXの値を表にまとめ、Xのとりうる値と各値をとる確率を調べる。 解答 5枚のカードの数字を 1 1 2 2′', 3 で表すと, 標本 (X1, X2)の選び方は全部で 52=25 (通り)集団 X=Xi+X2 の値を表にすると, 右のようになる。 2 したがって, 標本平均Xの確率分布は,次の表のよ うになる。 111223 1 1' 2 2' 3 1 1 1.5 1.5 2 1' 1 1 1.5 1.5 2 1.5 1.5 2 2 2.5 1.5 1.5 2 2 2.5 3 2 2 2.5 2.5 3 X 1 1.5 2 2.5 3 計 P 4 8 8 4 1 25 25 1 25 25 25 もつもの比 ものの割合を INFORMATION 標本標準偏差 p 母集団から大きさnの標本を無作為に抽出し, 変量xについて, その標本のもつxの 値を X1,X2, ..., Xn とする。 この標本を1組の資料とみなしたとき, その標準偏 S=12(X-X) を 標本標準偏差という。 Vnk=1 この例題において, 標本 (1, 3) の標本標準偏差は S=1/{(1-2)+(3-2)}=1 である。 標本平均 X=1+3=2 2 同時に取りま PRACTICE 71° 母集団 {0, 2, 2, 44, 4, 6 から, 無作為に大きさ2の る。 標本平均Xの確率分布を求めよ。 抽出す

解決済み 回答数: 1
数学 高校生

高1数Ⅱです 大至急お願いします🙇 (1)の回答にマーカー部がいらないのはなぜですか?? (2)はあるのですが… 違いを教えてもらいたいです🫡

20 基本 例題 6 展開式の係数(2) (多項定理の利用) 00000 次の式の展開式における,[ ]内に指定されたものを求めよ。 (1)(x+y+z) [xy2z2 の項の係数] (2) (a+6-2c) [abic の項の係数] HART & SOLUTION (a+b+c)" の展開式の項の係数 n! 一般項 blg!r!ab°c, p+gtr=nを利用 p.13 基本事項 5 (a+b+c)"={(a+b)+c}” として考えることもできるが,その場合,二項定理を2回適用 する必要がある。←別解 を参照。 n! ので,スムーズ。 一般項 abc" を利用する場合,a,b,c, b,g,r,nにそれぞれ代入するだけな 解答 (1)xy2z2 の項の係数は 5! 1!2!2! 5.4.3 2・1 -=30 一般項は 別解{(x+y+z} の展開式において, 22 を含む項は 5C2(x+y322 5! p!q!!xyz p+g+r=5 また, (x+y) の展開式において, xy2 の項の係数は 3C2 よって, xy2z' の項の係数は xyの項は Czxye 5C2 ×3C2=10×3=30 (2) (a+b-2c) abcの項は 一般項は 7! 7! 7! -α2b3-2c)2= (-2)²a²b³c² 2!3!2! 2!3!2! p!q!r!ab(-2c) p+gtr=7 よって, abc2 の項の係数は 7! 7.6.5.4 -x(-2)²=- -×4=840 2!3!2! 2・1×2・1 別解 {(a+b)-2c} の展開式において, c2 を含む項は 7C2(a+b)5(-2c)²=7C2(-2)²(a+b)5c² また (a+b) の展開式において, α263 の項の係数は5C3の頃は よって, abc2の項の係数は 5C3a2b3 7Cz(-2)2×5C3=21×4×10=840 PRACTICE 6 次の式の展開式における, [ ]内に指定されたものを求めよ。 (1)(x+2y+3z) [xz の項の係数 ] (2) (2x-12y+z) [xyzの項の係数

解決済み 回答数: 1
数学 高校生

回答一行目から2行目、計算過程を教えていただきたいです。よろしくお願いします🙇

要 例題 34 「少なくとも1つは・・・」の証明 00000 1 1 1 x + + = y 2 1 x+y+z であるとき, x+y, y+z, z+xのうち少なくとも [香川] 基本 24 1つは0であることを証明せよ。 CHART & SOLUTION 証明の問題 結論からお迎えに行く まず結論を示すには, どんな式が成り立てばよいかを考える。 x+y,y+z,z+xのうち少なくとも1つは0である。 ⇔x+y=0 または y+z=0 または z+x=0 ⇔ (x+y)(y+z) (z+x) = 0 * よって,を証明すればよい。 一 1 XC + 1 + y よって 12 1 の両辺に xyz (x+y+z) を掛けると x+y+z (x+y+z)(yz+zx+xy)=xyz {x+(y+z)}{(y+z)x+yz}-xyz=0 (y+z)x2+(y+z)2x+yz(y+z)=0 xについての式 計算する。 ゆえに (y+z){x2+(y+z)x+yz}=0 (y+z)(x+y)(x+z) = 0 y+z=0 または x+y=0 または x+z=0 したがって, x+y, y+z, z+xのうち少なくとも1つは 0 である。 INFORMATION 上の例題のように,結論から解決の方針を立てる考え方は大切で、証明の問題 ず, 有効な方法である。 以下には,代表的なものを紹介しておく。 ① x, y, zの少なくとも2つは等しい ⇒(x-y)(y-z)(z-x)=0 x, y, zの少なくとも1つは1に等しい ⇔ (x-1)(y-1)(z-1)=0 ③実数x, y, zのすべてが1に等しい ⇔ (x-1)2+(y-1)+(z-1)^=0 + 1 b + 1 C -=1であるとき, a, b, cのうち少なくとも1 PRACTICE 34° a+b+c=1, a

解決済み 回答数: 1
数学 高校生

数Ⅱ 恒等式の問題です。 重要例題22のヒントとしてCHART&SOLUTIONとあり、あとの計算がしやすいように文字を減らすと書いてあるのですが、あとの計算がしやすい文字の消去のコツってありますか??

41 重要 例題 22 条件式のある恒等式 00000 2x+y-3z=3, 3x+2y-z=2 を満たすすべての実数x, y, z に対して, px2+qy2+rz2=12 が成立するような定数, 4, rの値を求めよ。 CHART & SOLUTION 条件式の扱い 文字を減らす方針で,計算しやすいように すべてのx,y,zといっても, x, y, zの間には次の関係がある。 2x+y-3z=3 ...... 1, 3x+2y-z=2...... ② [立命館大] 基本18 1 3 つまり、 ①,②は条件式であるから, 文字を消去する方針で解く。 あとの計算がしやすいよ うに消去する文字に注意する。 ここではx,yをzで表して, 2 だけの恒等式を考える (下 の副文参照)。 ・・・・... ① 解答 2x+y-3z=3 ...... 1, x-5z=4 3x+2y-z=2・・・・・・ ② とする。 ゆえに x=5z+4 ① ×2-② から ① ×3-② ×2 から -y-7z=5 ゆえに y=-7z-5 これらを px2+qy2+rz2=12 に代入すると p(5z+4)2+g(-7z-5)2+rz²=12 よって p(25z+40z+16)+α(4922+70z+25)+rz2=12 左辺をぇについて整理すると (25p+49g+rz2+10(4p+7g)z+(16p+25g)=12 この等式がzについての恒等式となるのは, 両辺の同じ次数 の項の係数が等しいときであるから 25p+49g+r=0 ...... 3 4p+7g=0 4 16p+25g=12 (5) ④×4-⑤ から 3q=-12 ゆえに q=-4 よって、④から p=7 更に③から 175-196+r=0 ゆえに r=21 消去する文字が xの場合: ① x3-② ×2 から -y-7z=5 yの場合: ①×2 ② から x-5z=4 Zの場合: ①-② ×3 から -7x-5y=-3 となる。 これらを変形 するとき なるべく係数 が大きくならず 分数が 出てこないように考え て消去する文字を決め るとよい。 PRACTICE 22Ⓡ (1) 2x-y-30 を満たすすべてのx,yに対してax2+by2+2cx-9=0 が成り立 つとき,定数a, b, c の値を求めよ。 (2) x+y+z=2,x-y-5z=0を満たすx, y, zの任意の値に対して、常に a(2-x)2+6(2-y)'+c(2-z)2=35 となるように定数a, b, c の値を定めよ。 〔武庫川女子大】

解決済み 回答数: 2