数学
高校生
解決済み

少数のグラフはどうやって作るんですか?

462 基本 例題 71 標本平均の確率分布 00000 11,2,2,3の数字を記入した5枚のカードが袋の中にある。これを母集団 とし、無作為に大きさ2の標本X1, X2 を復元抽出する。 標本平均 X の確率 分布を求めよ。 CHART & SOLUTION p.459 基本事項 21 MOITUJO TRANS 標本平均は、標本の選び方によって値が変化する。 大 →標本の大きさを固定すると,標本平均Xは1つの確率変数となる。 確率を求めるときは、 同じ数字のカードは区別することに注意。 X1, X2のとりうる値とそ のときのXの値を表にまとめ、Xのとりうる値と各値をとる確率を調べる。 解答 5枚のカードの数字を 1 1 2 2′', 3 で表すと, 標本 (X1, X2)の選び方は全部で 52=25 (通り)集団 X=Xi+X2 の値を表にすると, 右のようになる。 2 したがって, 標本平均Xの確率分布は,次の表のよ うになる。 111223 1 1' 2 2' 3 1 1 1.5 1.5 2 1' 1 1 1.5 1.5 2 1.5 1.5 2 2 2.5 1.5 1.5 2 2 2.5 3 2 2 2.5 2.5 3 X 1 1.5 2 2.5 3 計 P 4 8 8 4 1 25 25 1 25 25 25 もつもの比 ものの割合を INFORMATION 標本標準偏差 p 母集団から大きさnの標本を無作為に抽出し, 変量xについて, その標本のもつxの 値を X1,X2, ..., Xn とする。 この標本を1組の資料とみなしたとき, その標準偏 S=12(X-X) を 標本標準偏差という。 Vnk=1 この例題において, 標本 (1, 3) の標本標準偏差は S=1/{(1-2)+(3-2)}=1 である。 標本平均 X=1+3=2 2 同時に取りま PRACTICE 71° 母集団 {0, 2, 2, 44, 4, 6 から, 無作為に大きさ2の る。 標本平均Xの確率分布を求めよ。 抽出す
母集団と標本 数学 数b

回答

疑問は解決しましたか?