数学
高校生
解決済み

数Ⅱ 恒等式の問題です。
重要例題22のヒントとしてCHART&SOLUTIONとあり、あとの計算がしやすいように文字を減らすと書いてあるのですが、あとの計算がしやすい文字の消去のコツってありますか??

41 重要 例題 22 条件式のある恒等式 00000 2x+y-3z=3, 3x+2y-z=2 を満たすすべての実数x, y, z に対して, px2+qy2+rz2=12 が成立するような定数, 4, rの値を求めよ。 CHART & SOLUTION 条件式の扱い 文字を減らす方針で,計算しやすいように すべてのx,y,zといっても, x, y, zの間には次の関係がある。 2x+y-3z=3 ...... 1, 3x+2y-z=2...... ② [立命館大] 基本18 1 3 つまり、 ①,②は条件式であるから, 文字を消去する方針で解く。 あとの計算がしやすいよ うに消去する文字に注意する。 ここではx,yをzで表して, 2 だけの恒等式を考える (下 の副文参照)。 ・・・・... ① 解答 2x+y-3z=3 ...... 1, x-5z=4 3x+2y-z=2・・・・・・ ② とする。 ゆえに x=5z+4 ① ×2-② から ① ×3-② ×2 から -y-7z=5 ゆえに y=-7z-5 これらを px2+qy2+rz2=12 に代入すると p(5z+4)2+g(-7z-5)2+rz²=12 よって p(25z+40z+16)+α(4922+70z+25)+rz2=12 左辺をぇについて整理すると (25p+49g+rz2+10(4p+7g)z+(16p+25g)=12 この等式がzについての恒等式となるのは, 両辺の同じ次数 の項の係数が等しいときであるから 25p+49g+r=0 ...... 3 4p+7g=0 4 16p+25g=12 (5) ④×4-⑤ から 3q=-12 ゆえに q=-4 よって、④から p=7 更に③から 175-196+r=0 ゆえに r=21 消去する文字が xの場合: ① x3-② ×2 から -y-7z=5 yの場合: ①×2 ② から x-5z=4 Zの場合: ①-② ×3 から -7x-5y=-3 となる。 これらを変形 するとき なるべく係数 が大きくならず 分数が 出てこないように考え て消去する文字を決め るとよい。 PRACTICE 22Ⓡ (1) 2x-y-30 を満たすすべてのx,yに対してax2+by2+2cx-9=0 が成り立 つとき,定数a, b, c の値を求めよ。 (2) x+y+z=2,x-y-5z=0を満たすx, y, zの任意の値に対して、常に a(2-x)2+6(2-y)'+c(2-z)2=35 となるように定数a, b, c の値を定めよ。 〔武庫川女子大】
数ⅱ

回答

✨ ベストアンサー ✨

x,y,zどれでも良いから、この中の1つの文字で二つの文字を表す。

式を見るとx,y,zどれも1次だから面倒レベルは変わらないが、
①②式を見ると、x,yは係数の差が1ずつで、zは差が2あるから、zにまとめるために、x,yで加減法をした方が少し楽かな?と自分なら考えます🙇

りー

係数の差が小さいものを優先的に揃えたほうが楽ということですか??

🍇こつぶ🐡

倍数して小さい方がいいかなと。
今回は、あまり変わらないですね。
元の係数は関係ないね。ごめん。

かけ算して合わせる係数が小さい方が良いね。

りー

わかりました!!
ありがとうございます😊✨️

この回答にコメントする

回答

疑問は解決しましたか?