数学
高校生
解決済み

高1数Ⅱです
大至急お願いします🙇
(1)の回答にマーカー部がいらないのはなぜですか??
(2)はあるのですが…
違いを教えてもらいたいです🫡

20 基本 例題 6 展開式の係数(2) (多項定理の利用) 00000 次の式の展開式における,[ ]内に指定されたものを求めよ。 (1)(x+y+z) [xy2z2 の項の係数] (2) (a+6-2c) [abic の項の係数] HART & SOLUTION (a+b+c)" の展開式の項の係数 n! 一般項 blg!r!ab°c, p+gtr=nを利用 p.13 基本事項 5 (a+b+c)"={(a+b)+c}” として考えることもできるが,その場合,二項定理を2回適用 する必要がある。←別解 を参照。 n! ので,スムーズ。 一般項 abc" を利用する場合,a,b,c, b,g,r,nにそれぞれ代入するだけな 解答 (1)xy2z2 の項の係数は 5! 1!2!2! 5.4.3 2・1 -=30 一般項は 別解{(x+y+z} の展開式において, 22 を含む項は 5C2(x+y322 5! p!q!!xyz p+g+r=5 また, (x+y) の展開式において, xy2 の項の係数は 3C2 よって, xy2z' の項の係数は xyの項は Czxye 5C2 ×3C2=10×3=30 (2) (a+b-2c) abcの項は 一般項は 7! 7! 7! -α2b3-2c)2= (-2)²a²b³c² 2!3!2! 2!3!2! p!q!r!ab(-2c) p+gtr=7 よって, abc2 の項の係数は 7! 7.6.5.4 -x(-2)²=- -×4=840 2!3!2! 2・1×2・1 別解 {(a+b)-2c} の展開式において, c2 を含む項は 7C2(a+b)5(-2c)²=7C2(-2)²(a+b)5c² また (a+b) の展開式において, α263 の項の係数は5C3の頃は よって, abc2の項の係数は 5C3a2b3 7Cz(-2)2×5C3=21×4×10=840 PRACTICE 6 次の式の展開式における, [ ]内に指定されたものを求めよ。 (1)(x+2y+3z) [xz の項の係数 ] (2) (2x-12y+z) [xyzの項の係数
数ⅱ

回答

✨ ベストアンサー ✨

係数だからです。
x^py^qz^rの部分は聞かれていません。

りー

問題に係数がなかったらつけなくていいってことですか?

係数ってのは分かりますか?
一般項がn!/p!q!r!・x^py^qz^r なので、
xy^2z^2の係数すなわち前についてる数は、
5!/2!2!=5・3・2=30

りー

係数はわかってます。
でもわかんなかったです。
ごめんなさい(_ _;)

問題で聞かれているのはxy^2z^2の前に付いている数です。

りー

なるほど!わかりました!!何回もありがとうございます😊

この回答にコメントする
疑問は解決しましたか?