学年

教科

質問の種類

数学 高校生

3枚目の(2)のソタチツテがわかりません。 問題文の1分、3分、5分は全て1/3の確率までは理解したのですが、この3つがどう決まるのか、 問題文3行目の『それぞれの踏切における待ち時間は、もう一方の遮断機がおりているかどうかと独立に決まり』の部分はEとFは互いに独立だと言っ... 続きを読む

第2問 (配点 20) ある地点から別の地点に移動するまでの道のりに踏切があると, 踏切で発生する待 ち時間によって, 移動にかかる所要時間が変わることがある。 踏切での待ち時間が確 率によって決まるとき, 所要時間がどのようになるかを考えよう。 ただし, 道のりの 中で,一つの踏切を通過する回数は1回とする。 同じの2回は× (1)地点P から地点 Q までの道のりには、AとBの二つの踏切がある。 どちらの踏 切においても, 踏切に到着した時点で遮断機が降りている場合には, ちょうど1分 間の待ち時間が発生するものとする。 地点Pから地点Qまでの道のりにおいて, A で遮断機が降りている事象をAとし, Bで遮断機が降りている事象をBとする。 なお, A, B にある遮断機はお互い関連せず独立に動き 事象 A, B が起こる確 率はそれぞれ P(A)= 13.P(B)=1/13 であるとする。 4 (i) AとBのどちらでも待ち時間が発生しない事象は アと表すことができ, AとBのどちらでも待ち時間が発生しない確率は である。 ア の解答群 A∩B AUB (2) ANB AUB ④ ANB AUB ⑥ ANB AUB 一数 A② -6- (数学A 第2問は次ページに続く。)

解決済み 回答数: 1
数学 高校生

命題の証明 3の倍数でないことをいうため、3×整数+1 または3×整数+2 の形の式を作りたいです。 9k²+9k+4を3でくくると3(3k²+3k+1)+1 9k²+15k+8を3でくくると3(3k²+5k+2)+2 となぜなるんですか?4を3でくくると普通×3分の1で... 続きを読む

次式について 対偶「nが3の倍数でないならば、 hath+2は3の倍数でない」 nが3の倍数でないとき。 12 [REPEAT 数学Ⅰ 問題114] (1) の方が示しやすい。(代入しやすい) n は整数とする。次の命題を証明せよ。(10点)結論→対偶を利用 仮定²+n+2が3の倍数ならば,nは3の倍数である。 するといい 1次式について を証明すればよい。 kを整数とし、←人事 全ての数は、 3k,3k+1, k=0で0 1 ' 38+2 . 2 kを整数として、n=3k+1 k=1で3 4 5 または、n=3k+2 と表されるので、 k=2で6 7 8 (i) h=3k+1のとき、 n²+n+2 =(3+1)+(3k+1)+2 =9k2+9k+4 = 3(3R2+3R+1)+1← 3k2+3k+1は整数より、 hth+23の倍数でない。 (1) n=3k+2のとき(と 3の倍数3の倍数3の倍数 である でない でない 整数 3x+ の形 4k+1 ※同じように 40 5の 60 44k 倍数 5k 倍数 6k 倍数 4k+25k+2 5k+1 6k+1 6k+2 整数 hath+2 =(3k+2)+(3k+2)+2 同 3x+2 4k+3 15k+3 16k+3 =9k²+15k+8 =3(3k²+5k+2)+25 の形 4の倍数 5k+4 6RT4 でない 5の倍数 6k+5 対偶が真より でない 3k25k+2は整数より もとの命題も真 ++2、3の倍数でない。 と表せる。 6の倍数 でない

解決済み 回答数: 2