学年

教科

質問の種類

数学 高校生

ここの2番の書いてある意味がわからないので,一つ一つ教えて欲しいです。

重要 xy 例題 21 内積を利用したux+vy の最大・最小問題 00000 平面上に点A(2,3)をとり、更に単位円x2+y2=1上に点P(x, y) をと る。また、原点を0とする。 2つのベクトル OA, OP のなす角を0とすると き内積 OA・OPを0のみで表せ。 (2) 実数x, y が条件 x +y2=1 を満たすとき, 2x+3yの最大値、最小値を求め 指針 [愛知教育大 〕 (1)Pは原点Oを中心とする半径1の円 (単位円) 上の点であるから |OP|=1 (2) (1)は(2)のヒント A(2,3),P(x, y) に注目すると 2 x +3y = OA・OP かくれた条件-1≦cos 0≦1 を利用して, OA・OPの最大・最小を考える。 基本11 1 章 3 ベクトルの内積 解答 OA・OP=|OA||OP|cose =√13cose (2)x2+y=1 を満たす x,y に | (1) |OA| =√22+32 = √13, |OP|=1から YA A(2,3) 内積の定義に従って計算。 対し, OP = (x,y) DA = (2,3) として2つのベ クトル OA, OP のなす角を とすると, (1) から -10 1 x 2x+3y=OA・OP=√13cos 200 20°180°より, -1≦cos≦1であるから, 2x+3y の 0=0°のとき最大, 最大値は 13 最小値は13 0=180°のとき最小。 |-|OA||OP|SOA・OP k 別解 1. 2x+3y=kとおくと 2 y= -x 3 3 Fonie |OA||OP| これをx2+y2=1 に代入し, 整理すると 13x24kx+k2-9=0 ...... ① から求めてもよい (p.612 重要例題 19 (1) 参照)。 20 xは実数であるから, xの2次方程式 ① の判別式をD xは実数であるから,x とすると D≧0 D =(-2k-13(k-9)=-9(k-13) であるから k2≦13 よって√13≦k≦√13 別解2. (x,y)= (cos 0, sin01) と表されるから 2次方程式が実数解を もつ 実数解⇔ D≧ (数学Ⅰ)である 三角関数の合成 ( 数学II) 2x+3y=2cos01+3sinA=√22+32sin(01+α)=√13sin(01+α) 3 2 ただし COS α= √13 sina= √13 1main (+α) ≦1であるから -√13≦2x+3y≦√130°≦0,<360° 2 =2を満たすとき, ax + by

未解決 回答数: 1
数学 高校生

このように教科書には放物線の接線の方程式の確かめしかしていないのですが、、、 この放物線の接線に至った経緯が知りたいです! 私が微分とか使ってやったら少し違います 誰か教えてください!!

(x+1)2 (x-3)²+2=1 第1節 2次曲線 | 141 | 研 放物線 2次曲線の接線の方程式 y2=4px ① について, ①上の点P (x1, yi) における接線の方程式は yy=2p(x+x) ② であることが知られている。このことを確かめてみよう。 ②から 2px=yy-2px ①に代入して整理すると 2-2yy+4px=0 ここで,点P(x1,y) は放物線 ①上 にあるから y₁²=4px₁ よって y2-2yy+y^=0 5 P(x1, y1) すなわち (y-y₁)²=0 10 10 したがって, 2次方程式 ③は重解 O 2 x y=yをもつから,放物線 ①と直線 ② は,点P (x1,y)で接する。 すなわち, (1) 放物線 ①上の点P (x1,y1) における接線の方程式は②である。 15 15 楕円,双曲線の接線については,次のことが知られている。 x² 2 楕円 Q2 62 -=1 上の点P (x1,y) における接線の方程式は X1X yıy + =1 a 62 円 x2+y2=r2 上の点P (x1,yì) における 接線の方程式は x₁x+y₁y= r² x 2 1,2 双曲線 a² 62 =1 上の点P (x1, y) における接線の方程式は X1X yıy =1 a² 62 練習 次の曲線上の点Pにおける接線の方程式を求めよ。 1 (1) 放物線 y=4x, P(1, 2) (2)楕円 12+1=1,P(31) 4 20

未解決 回答数: 1