数学
高校生

このように教科書には放物線の接線の方程式の確かめしかしていないのですが、、、
この放物線の接線に至った経緯が知りたいです!
私が微分とか使ってやったら少し違います
誰か教えてください!!

(x+1)2 (x-3)²+2=1 第1節 2次曲線 | 141 | 研 放物線 2次曲線の接線の方程式 y2=4px ① について, ①上の点P (x1, yi) における接線の方程式は yy=2p(x+x) ② であることが知られている。このことを確かめてみよう。 ②から 2px=yy-2px ①に代入して整理すると 2-2yy+4px=0 ここで,点P(x1,y) は放物線 ①上 にあるから y₁²=4px₁ よって y2-2yy+y^=0 5 P(x1, y1) すなわち (y-y₁)²=0 10 10 したがって, 2次方程式 ③は重解 O 2 x y=yをもつから,放物線 ①と直線 ② は,点P (x1,y)で接する。 すなわち, (1) 放物線 ①上の点P (x1,y1) における接線の方程式は②である。 15 15 楕円,双曲線の接線については,次のことが知られている。 x² 2 楕円 Q2 62 -=1 上の点P (x1,y) における接線の方程式は X1X yıy + =1 a 62 円 x2+y2=r2 上の点P (x1,yì) における 接線の方程式は x₁x+y₁y= r² x 2 1,2 双曲線 a² 62 =1 上の点P (x1, y) における接線の方程式は X1X yıy =1 a² 62 練習 次の曲線上の点Pにおける接線の方程式を求めよ。 1 (1) 放物線 y=4x, P(1, 2) (2)楕円 12+1=1,P(31) 4 20
27 = 4px y₁ f = 2 p (x + x y 2P x'= 3 y 任意の点(y)で 2 2P 24P 2P y, y = 2px + y² zzpX. 2 t
曲線

回答

疑問は解決しましたか?