学年

教科

質問の種類

数学 高校生

(1)でなぜあまりの係数わかってないのに 勝手にあまりを一次式にしてるんですか?

92 重要 例題 58 剰余の定理の利用 (3) (1) f(x)=x-ax+b が (x-1)2 で割り切れるとき, 定数 α, b の値を求 めよ。 (2) 2以上の整数とするとき, xn-1 を(x-1)2で割ったときの余り を求めよ。 [ 学習院大 ] CHART SOLUTION M=2 + A² 割り算の問題 基本公式 A=BQ+R を利用 1 次数に注目 ② 余りには剰余の定理 (x-1)2で割り切れるf(x)=(x-1)2Q (1) n=1 53² (x-1) * 2x22 T0 81/464|1 ⇒ f(x)がx-1で割り切れ、更にその商がx-1で割り切れる。 (2) 次の恒等式を利用する。 ただし, nは自然数とし,α°= 1,6°= 1 である。 || = (^-A (ar) a²_b² = (a−b) (an-¹+an-²b+an-³p² + ... ... + abr - ² + b² −¹) 4²3 B²² (a Ma² + ab + B 解答 (1) f(x)はx-1 で割り切れるから f(1)=0 1-α+6=0 ゆえに b=a-1 よって したがって f(x)=x-ax+α-1 =(x-1)(x2+x+1-α) g(x)=x2+x+1-α とすると ゆえに g(1)=0 ゆえに a=3 両辺にx=1 を代入すると 0=a+b よって 3-α=0 これを①に代入して b=2 (2) x-1を2次式(x-1)2で割ったときの商をQ(x), 余り をax+b とすると, 次の等式が成り立つ。 x"-1=(x-1)2Q(x)+ax+6 よって PRACTICE・・・ 58 ④ 4 x"−1=(x−1)²Q(x)+ ax=a x"-1=(x-1)(x"-1+x"-2+......+x+1) であるから =(x-1){(x-1)Q(x)+α} afr ²5-a 両辺にx=1 を代入すると よって a=n したがって 求める余りは ⑥x-1+x2+..+x+1=(x-1)Q(x)+α 1+1+ ...... +1+1=a b=-a=-n ゆえに ...... SC nx-n (1)a,bは定数で、xについての整式 このとき, a h Last h=α = b 基本 54 a-1 10 -a+1 10 -a 1 1 11-a +10 4.8+(5) 条件から,g(x) もx-1 で割り切れる。 全 かおる 割り算の基本公式 A=BQ+R (x-1)2Q(x)+α(x-1) ■1=x であるから、左 の項数はxからx"ートま での n個

解決済み 回答数: 1