学年

教科

質問の種類

数学 高校生

149.2 tanθを求める過程に問題はないですか? またcosθを求める過程はこれだとダメですよね?? (cosθ>0とは限らないのにそうだと決めつけて計算してしまっているように振り返った時に感じた。)

234 基本例題 149 2倍角、半角の公式 (1) << sin π (2) t=tan 解答 7/<0< 2 指針 (1) 2倍角、半角の公式を利用する。 また sin 20, tan- 209 ゆえに 0 のとき、次の等式が成り立つことを証明せよ。 2 18000 182 sin0= (1) cos20=1-2sin²0=1-2・ << πであるから よって cos 20, sin20, tan =12123のとき, 5 の値を求めるには, Coseの 必要になるから,かくれた条件 sin'0+cos²0=1 を利用して,この値も求めて 0 (2) 0=2. であるから, 2倍角の公式を利用。 tan0→cosl sin0 の順に証明する tan と cose が示されれば, sin は sin0=tan Acose により示される 。 tan 2t 1+t², (2) tan 0=tan 2. cos0=-√1-sin20 = 0 2 0 2 sin20=2sinAcos0=2. <0よりであるから 2 1 1+tan²= 0 S2. 2 COS よって cos0=cos2・ 1-cos 1+cos 0 2 tan から cos0= 1-tan²- 31² 5 0 2 0 2 20 2 ゆえに sin0=tanocos0= = COS 2 =2cos' --√√₁-(²³)² = 2.³-·-(-3) = -4/5 5 5 25 =1- 0 2 2t 1-t² 0 2 1-t² 2t tan0= 1+2, can 1-t² = 18 7 leden 20 25 25 BAJAR com 5+4 5-4 -1= = 0 tan o na 2 2ie-4 ata and 5 n 424 s 2t 1-t² 1-12 1+12 =3 (t≠±1) 1 + tan[] 2 1+ t² 0 2 ->0 2t 1+t² 191/202 -1= の値を求めよ。 200 1 1+t2 1-t² 1+t² (t≠±1) S=phieS+1=S p. 233 L は第2象限の角であるか 5 cos 0<0 1+ 1- 検討 sin=scos 2 5+4 5-4 COS10/2=cとおり と 0 tan-2-1-2 これを式の右辺に代入して ps2+cz = 1 などから、左 導くこともできる。

回答募集中 回答数: 0
数学 高校生

(4)が解答を見てもわかりません。 教えてください。

太郎さんと花子さんはそれぞれ,何も書いていない6枚のカードを持っている。 太郎さんは、 自分が持っ 標準 12分 数の和が30 になるようにする。 二人は、用意したカードを使って、 次のルールに従ってゲームをする。 に一つずつ正の奇数を書く。 ただし, カードに数を書く際には、 自分が持っている6枚のカードに書かれた ているカードのそれぞれに一つずつ0以上の偶数を書き, 花子さんは、 自分が持っているカードのそれぞれ ルール それぞれが、自分の持っている6枚のカードから1枚を無作為に選び、選んだカードに書かれたも を自分の得点とする。このとき、得点の大きい方を勝者とする。 はじめ,太郎さんと花子さんは6枚のカードに次のように数を書いた。 太郎さん 2 ④4 6 8 10 花子さん: 15 555 19 + 3 33 35 (1) 太郎さんが 6 のカードで花子さんに勝つ確率は (2) 太郎さんが勝つ確率をPr, 花子さんが勝つ確率をPとすると はまるものを次の⑩~②のうちから一つ選べ。 ⑩Pr<PH 私が 1 3 57 a1+a2+a3+a+as = オ ア a₁ +3a2+5a3+7a4+9a5 = カキ である。 0 PT>PH @ PT=PH*600* 花子さんは,カードに書く数を変更することで,自分が勝つ確率PHを大きくしようと考えた。まず、カ ードに書く数の候補を1,3,5,7,9の5種類のみとして確率を考えたのが、次の花子さんのノートである。 ・花子さんのノート 選んだとき 23 77のカードを選んだとき これらを用いると,私が勝つ確率P を求めることができる。 イウ LATTEOT である。 AF FS 944 9 のカードをそれぞれ ②1枚 22 枚, α3枚 4枚 α5 枚持っているとすると a2 解答・解説 JO134 300 私が勝つ確率は,私が①のカードを選んだとき / 2 3のカードを選んだとき 25のカードを H である。 のカードを選んだとき 3 オ カキに当てはまる数を求めよ。 4) 花子さんのノートを参考に,正しいといえるものを、次の⑩~③のうちから二つ選べ。 ただし,解答 順序は問わない。 ク ケ ⑩ 花子さんがカードに書く数の最大値を7とすると、常にPH < 1 である。 ① 花子さんがカードに書く数の最大値を9とすると、常にPH=1/2である。 オカキクケ 2 ②花子さんがカードに書く数の最大値を 11 とすると, PH> / となることがある。 ③ 花子さんがカードに書く数の最大値を13 とすると、常にPH</である。 2 に当て

回答募集中 回答数: 0
数学 高校生

どうして(I)でn=2の時の分も考えるんですか?

例題 B1.63 n=k-1, k を仮定する数学的帰納法 x=t+/1/2 とし, P.=f+1/12 t" のn次の多項式で表されることを示せ 考え方 解答 とおく (n=1,2, .・・・・・). このとき,Pnはx 自然数nに関する証明については,数学的帰納法を用いる. まずはオーソドックスに 考えてみよう. (証明) (I) n=1のとき,P,=t+==xより成り立つ. (Ⅲ)n=kのとき,P.=t+1=(2 n=k+1 のとき, Ph+1 = th+1+ * + ² + = ( ₁² + + ) ( ₁ + — ) - (^ ^ ₁ + 7 ² ₁ ) =(xのk次の多項式) と仮定すると, **** =xP-P-1 ここで,Pk= (xのk次の多項式)と仮定しているから,xPhはxの(k+1) 次の多項式で ある.しかし,P-1については、何次式なのか, xの多項式なのかもわからない つまり、 Pだけではなく, P-1 の次数についても仮定が必要になる.また, (II)で,n=k-1,k とすると,n=1,2,….…...であるから.k-1≧1 より k≧2 でなければならない. 1 (I)n=1のとき,P=t+==xより成り立つ 2 n=2のとき,P=f+1/2=(t+12=x-2 より題意は成り立つ。 (II)n=k-1,k(k≧2) について,題意が成り立つと仮定する. JP-1 はxの(k-1) 次の多項式 Pkはxの次の多項式 すなわち, 1 P₁+₁=²^¹ + ₁² = (1² + 7 ) ( ² + 7 ) ( ^¹ + ²) Pk+1=th+1+ = - tk+1 rick 16=xPk-PR-1 ここで,xPk は x×(xのk次の多項式)より x (k+1) 次の多項式となり, P-1 はxの(k-1) 次の多項式であるから, Pk+1 は x の (k +1) 次の 多項式となる で表されると仮定すると、 -2 と条件 よって,n=k+1のときも題意は成り立つ Pr (I)(II)より,すべての自然数nについて題意は成り 立つ. P-1 は x (k-1) 次の多項 式より, =(x (k+1) 次の多項式) (x-1)次の多項式) !!! 注〉 (I) で P1がxの1次の多項式であることだけを示し, (II)の一般的な方法で, P2がxの 2次の多項式であることを示そうとすると, Po, P, が必要となり困る. (Po は定義さ れていない。)よって,(I)でP2 も調べておく必要がある。 の3項は なお、下の練習B1.63 は, フィボナッチ数列の一般項に関する問題である. (p. B1-84 参照)

回答募集中 回答数: 0