学年

教科

質問の種類

数学 高校生

【統計的な推測】 確率変数XiとXってなんなんですか? 何が違うんですか? 頭の悪い質問ですみません🙋

第5問 (選択問題) (配点 16) いてもよい。 問~第7問は,いずれか3問を選択し, 解答しなさい。 以下の問題を解答するにあたっては, 必要に応じて 19ページの正規分布表を用 太郎さんと花子さんには,共通で好きなお菓子がある。 そのお菓子は1個ずつ包 装された5個が1つの箱に入って売られている。そのお菓子にはある割合で特別な 味付けのものが混じっている。 特別な味付けのお菓子は無作為に箱に入れられ,1 つの箱に1個もないこともあれば2個以上のときもある。特別な味付けのお菓子の の割合といわれているが, 2人は常々もっと少ない割合ではないかと感 そこで2人は,友達や家族の力も借りて特別な味付けのお菓子の個数の 情報を集め、 検討してみることにした。 1 割合は 2人は調査を始める前に,有意水準と棄却域について自分たちなりの考えをまと 止めておくことにした。 数学Ⅱ・数学B 数学 C 2人は, どの包装についても確率で特別な味付けのお菓子が, 確率 1-で普 通のお菓子が入っているように0 <<1である定数を定められると仮定して p=1/3であることを帰無仮説 = 1/3であることを対立仮説として有意水準5%の 両側検定で判定することにした。 2人は情報を集めた 80 箱分400個のお菓子における特別な味付けのお菓子の個 数が70個であることを確かめた。 どの包装についても確率 1/3で特別な味付けのお 菓子が入っており,確率 で普通のお菓子が入っていると仮定する。 包装1個ご とに1以上400以下の整数を1つずつ割り振り, 数えごとに確率変数X を, 数 えが割り振られた包装1個が特別な味付けのお菓子だったら値 1, 普通のお菓子だ ったら値0をとる確率変数として定める。 さらに X = X1+X2+ ・・・ + X 400 により確 率変数Xを定める。 X, Xの期待値 E (Xi), F(X)について E (X)= コ (i=1, 2, ..., 400) であり E (X)= シス である。 また, Xi, X の分散 V(X), 太郎 : 模擬試験などで使われる偏差値は50+ 計算されるそうだよ。 (個人の得点) (平均点)、 (標準偏差) ×10 で (X)について V(X)= セ ソタ (i=1, 2,.., 400) であり V(X)= チッ で 花子: 正規分布表から標準正規分布における有意水準 5% の両側検定におけ 96 る棄却域は ア イウ 以下または ア イウ 以上だから, 一般の正規分布における有意水準 5% の両側検定における棄却域は, 偏差値で表現すればエオ カ 以下または キク ある。 400 を十分に大きい数とみてXの確率分布は期待値 シス 標準偏差 テ の正規分布で近似できる。 よって実際に特別な味付けのお菓子が400個中 70 個だ ったことから有意水準5%の両側検定により ト 。 以上と 400- なるね。 30 の解答群 69 太郎: 模擬試験について調べるときに受験者から無作為に1人選ぶとして, そ れなりに選ばれそうな範囲だね。 4. 6 ⑩仮定を疑わせる結果となった 花子: 私たちはあまり強い表現は用いないことにして, 数値が棄却域に属する ときは 「仮定を疑わせる結果となった」, 棄却域に属さないときは 「仮 定を疑わせる結果とはならなかった」と述べることにしよう。 ①仮定を疑わせる結果とはならなかった 0405 1.96×10+50 =-19,650 (数学Ⅱ・数学B 数学C第5問は次ページに続く。) 20.95 69,6 -16- (数学Ⅱ・数学B 数学C第5間は次ページに続く。) -17- 400

解決済み 回答数: 1
数学 高校生

全くわかりませんできれば明日までに回答が欲しいですおねがいします。

A2 20人の生徒に10点満点の数学のテストを行った。試験当日1人の生徒が欠席したため、 19人の生徒が受験し、19人の生徒が受験したテストの得点の平均値は5(点),分散は4で あった。 後日、欠席していた1人の生徒がこのテストを受験したところ、 得点が7点であった。 太郎さんと花子さんは、今回のテストの得点の分散について会話をしている。 2人の会話 を読み、 以下の問いに答えよ。 ただし, テストの得点は整数とする。 太郎: 受験者が1人増えたから,分散の値も変化するよね。 花子:そうだね。 でも、20人の受験者全員の得点がわからないから,どうやって求め たらいいかな。 太郎 次のようにして求めるのはどうだろう。 <太郎さんの解答> 試験当日にテストを受けた19人の受験者の得点をx (1≦x≦19, nは自然数)と おく。 試験当日にテストを受けた19人の受験者の得点の平均値が5, 分散が4であ るから {(x1-5)+(x2-5)+…+(x19-5)^= 4D すなわち (x1-5)+(x2-5)+…+(x19-5) 76...... ② よって、 20人の受験者全員の分散をVx とすると V2= 2l(x1-5)2+(x2-5)+…+(-5)+(7-5)2 =2/10(764) ......④ =4 花子: <太郎さんの解答> には誤りがあるよ。 (ア) がおかしいよ。 太郎: そうか。じゃあ、どうすればいいのかな。 花子: 分散は,(分散)=(x^2の平均値)(xm の平均値)? を利用して求めることができ るから、試験当日にテストを受けた19人の受験者の得点x (1≦x≦19 n は自 然数)について, (xm² の平均値) を求めることにより、 20人の受験者全員の得点 の分散を求めることができないかな。 (1) 試験当日にテストを受けた19人の受験者の得点の標準偏差を求めよ。 また, 花子さん が誤りを指摘した (7) に当てはまるものを,次の1~4のうちから1つ選び、番号で 答えよ。 1 ①立式 2 ①から②への式変形 3 ③ 4 ③から④への式変形 (2)19, nは自然数) の平均値を求めよ。 また, 20人の受験者全員の得点の 分散 Vs を求めよ。 (配点 20 )

回答募集中 回答数: 0