学年

教科

質問の種類

数学 高校生

数Aの図形の性質の問題です。 この問題の(3)の答えが⑦になるのですが、なぜそのようになるのか考え方が分かりません。 よろしければ、どなたか教えていただけませんか🙇‍♀️

36 難易度 ★ 目標解答時間 8分 右の図のように鋭角三角形ABC があり,その外接円 K の中心を 0, 直線OC と円Kの交点のうちCではない方の点をDとする。 また,辺BCの中点をMとする。さらに,△ABCの各頂点から対辺 に引いた3本の垂線は1点で交わるから,この点をHとする。 (1)△ABCの形状に関係なく垂直になる2直線は ア の解答群 K ア である。 B C ⑩「直線 AH と直線 BC」と「直線 BC と直線 BD」と「直線 OA と直線AD」 ① 「直線 BCと直線 BD」 と 「直線 OM と直線 BC」と「直線 OH と直線 BD」 ②②「直線AH と直線 BC」と「直線 BC と直線 BD」と「直線 OM と直線 BC」 ③「直線 AH と直線 BC」と「直線 BC と直線 BD」と「直線 AD と直線 BD」 (2)△ABCの形状に関係なく直線OM と平行な直線は AA ウ であり、直線AD と ③直線BD④ 直線AH 直線BH 平行な直線は I である。 ~ エ の解答群 と ウ の解答の順序は問わない。) ⑩ 直線 OA ① 直線 OB ② 直線 OC ③ 直線 BD ④ 直線 AH ⑤ 直線 BH ⑥ 直線 CH (3) 四角形 ADBH の種類としてあり得るものをすべてあげると,次の①~ ⑨のうち、正しい ものは である。 オ の解答群 ⑩ 台形 ② ひし形 ④ 台形と平行四辺形 ⑥ ひし形と長方形 ⑧ 平行四辺形とひし形と長方形 ①平行四辺形 ③ 長方形 ⑤ 平行四辺形とひし形 ⑦ 台形と平行四辺形とひし形 ⑨ 台形と平行四辺形とひし形と長方形 (配点 10 )

解決済み 回答数: 1
数学 高校生

至急お願いします🙏 この問題の解き方教えてください🙏

E 難易度★ 36 目標解答時間 8分 右の図のように鋭角三角形ABC があり,その外接円Kの中心を0 A D K 0 直線 OC と円 K の交点のうちCではない方の点をDとする。 また,辺BCの中点をMとする。 さらに, △ABCの各頂点から対辺 に引いた3本の垂線は1点で交わるから,この点をHとする。 (1)△ABCの形状に関係なく垂直になる2直線は アである。 B ア の解答群 ◎「直線 AH と直線 BC」と「直線 BCと直線 BD」と「直線 OA と直線 AD」 ①「直線 BC と直線 BD」と「直線 OM と直線 BC」 と 「直線 OHと直線 BD」 ②「直線 AH と直線 BC」 と 「直線 BCと直線 BD」と「直線OM と直線 BC」 ③「直線AHと直線 BC」 と 「直線BCと直線 BD」 と 「直線 AD と直線 BD」 (2)△ABCの形状に関係なく直線OM と平行な直線は 平行な直線は I である。 C と ウ であり, 直線AD と F E イ ~ エ |の解答群 イ ウ の解答の順序は問わない。) D ⑩ 直線 OA ① 直線 OB 直線 OC ③ 直線 BD ⑤ 直線 BH ⑥ 直線 CH 4 LAH (3)四角形 ADBH の種類としてあり得るものをすべてあげると、次の①~⑨のうち,正しい ものは オ である。 オ の解答群 ⑩ 台形 ②ひし形 ④ 台形と平行四辺形 ⑥ ひし形と長方形 ⑧ 平行四辺形とひし形と長方形 ①平行四辺形 ③ 長方形 ⑤ 平行四辺形とひし形 3579 台形と平行四辺形とひし形 台形と平行四辺形とひし形と長方形 (配点 10) 図形の性質 83

解決済み 回答数: 1
数学 高校生

A Hの求め方がわかりません

00000 p.264 基本事項 S XOXsine C めても 10 あ 基本 例題 163 図形の分割と面積 (1) 次のような四角形ABCD の面積Sを求めよ。 平行四辺形ABCD で, 対角線の交点をOとすると AC=10, BD=6√2, ∠AOD=135° 00000 AD//BCの台形 ABCD で, AB=5,BC=8, BD=7, ∠A=120° 指針 解答 /P.265 基本事項 2 基本 162 四角形の面積を求める問題は, 対角線で2つの三角形に分割して考える (1) 平行四辺形は, 対角線で合同な2つの三角形に分割されるから S=2△ABD また, BO=DO から △ABD = 2△OAD よって、 まず △OAD の面積を求める。 (2) 台形の面積)=(上底+下底)×(高さ)÷2 が使えるように, 上底AD の長さと高 さを求める。 まず, △ABD (2辺と1角が既知) において余弦定理を適用。 CHART 四角形の問題 対角線で2つの三角形に分割 (1)平行四辺形の対角線は、互いに他を2等分するから OA= =1/2AC=5, OD= ゆえに よって BD=3√2 AOAD A B D 135° O -12 OA・ODsin 135°=123・5・3√2/1/12 S=2△ABD=2・2△OAD(*)=4• 15 55 2 = 267 (*) △OAB と△OAD は, それぞれの底辺を OB, OD とみると, OB=OD で, |高さが同じであるから,そ の面積も等しい。 [参考] 下の図の平行四辺形 C の面積Sは 15 52 S=1/2AC・BDsine =30 [練習 163 (2) 参照] A D D 0 120° 5 7 (2) △ABD において, 余弦定理により A 72=52+AD2-2・5・AD cos 120° AD2+5AD-24=0 4 4章 1 三角形の面積、空間図形への応用 ゆえに よって (AD-3) (AD+8)=0 AD> 0 であるから AD=3 B C BH C 8 頂点Aから辺BCに垂線 AH を引くと AH=ABsin∠ABH, ( ZABH=180°-∠BAD=60° (g)(ABAA <AD / BC よって S=1/12(AD+BC)AH (上底+下底)×(高さ)÷2 -12(3+8)-5sin60=55/3 =CA 4 163 (1) 平行四辺形ABCD で, AB=5, BC=6, AC=7 練習 次のような四角形ABCDの面積Sを求めよ (O は ACとBD の交点)。 (2)平行四辺形ABCD で, AC=p, BD=g, ∠AOB=0 (3) AD / BC の台形ABCD で, BC = 9CD=8, CA=4√7, <D=120° Sare

回答募集中 回答数: 0
数学 高校生

2番の赤線を引いたAHの長さはどこでわかるんですか?

000 0.264 基本事項 e S XOXsine 1 FINA 基本例 163 図形の分割と面積 (1) 次のような四角形ABCD の面積Sを求めよ。 平行四辺形ABCD で, 対角線の交点を0とすると AC=10, BD=6√2, ∠AOD = 135° 00000 AD/BCの台形ABCD で, AB = 5, BC = 8, BD = 7, ∠A=120° 指針 解答 /P.265 基本事項 基本 162 四角形の面積を求める問題は, 対角線で2つの三角形に分割して考える。 (1) 平行四辺形は, 対角線で合同な2つの三角形に分割されるから S=2△ABD また, BO=DO から AABD=2A0AD よって、 まず △OAD の面積を求める。 (2) 台形の面積)=(上底+下底)×(高さ)÷2 が使えるように,上底 AD の長さと高 さを求める。 まず, △ABD (2辺と1角が既知) において余弦定理を適用。 CHART 四角形の問題 対角線で2つの三角形に分割 (1) 平行四辺形の対角線は,互いに他を2等分するから =1/2AC=5, OA= OD=BD=3√2 AOAD = 2 JA A EL D 135° 0 √2 15 267 | (*) △OAB と △OAD は, それぞれの底辺を OB, OD とみると, OB=OD で, 高さが同じであるから,そ の面積も等しい。 C 参考 下の図の平行四辺形 の面積Sは -AC・BD sin 0 S=1/2A1 B 1/13 OA・OD sin 135 1/12・5・3/21/12=12 5.3√2. (*) S=2AABD=2.2A0AD =4• -=30 (2)△ABD において,余弦定理によりA 2 A ADS- 練習 163 (2) 参照] D 4 4章 1 三角形の面積、空間図形への応用 ゆえに を求めても よって 内角であ A <180° nA<l D 72=52+AD2-2・5・AD cos 120° 5 ゆえに AD2+5AD-24=0 120° 7 よって (AD-3)(AD+8)=0+4 B C BH C AD> 0 であるから AD=3 8 -, a,b,c ど, 薫が比較 頂点Aから辺BC に垂線 AH を引くと AH=ABsin∠ABH, ∠ABH=180°-∠BAD=60° <AD / BC 利用する Jih 1200 よって S=(AD+BC)AH 18 (上底+下底)×(高さ) ÷ 2 =(3+8)-5 sin 60°= 55√3 CA 18 162 練習 次のような四角形ABCD の面積Sを求めよ (O は ACとBDの交点)。 ② 163 (1) 平行四辺形ABCD で, AB=5, BC=6, AC=7 (2)平行四辺形ABCD で, AC=p, BD=g, ∠AOB=0円 (3)AD // BCの台形ABCD で, BC = 9,CD=8, CA=4√7, ∠D=120° Sare

未解決 回答数: 1