学年

教科

質問の種類

数学 高校生

数1の二次方程式、写真のアの2行目の式の意味が分かりません。 イは複合同順のとこが何言ってるか分かりません。 ウは最後の2行が意味わかりません。 よろしくお願いします🙇

4/9x 12次方程式 方程式を解く (ア)の方程式 x2-3+2/2x=0 を解け. (イ) 連立方程式x+2y=-5,x'+xy+y2=16 を解け . (ウ)の4次方程式 3.5.344.2+5x+3=0は,t=x+ (摂南大工) (山梨学院大 経営情報, 改題) 1 とおけば,tの2次方程式[ I である. (中京大文系) に変形できる. 上記の4次方程式の解の最小値は| A b±√62-4ac 解の公式 2次方程式 ax2+bx+c=0(a≠0) の解は, x= 2a - b±√b2-ac 特に, 1次の係数が “偶数 (2倍の形)” である ax2+2bx+c=0の解は,x=- a 解の公式は2か所に散らばっているェを平方完成によって1か所にすることで導ける (p.30). (f(x)=g(x) f(x) の符号で場合分けするか, p.17 で述べた次の言い換えを使う. [g(x) ≧0 に着目] f(x)=g(x) 「g(x) 20かつf(x)=g(x)」 または 「g(x) ≧0 かつf(x)=-g(x)」 相反方程式 (ウ)のように,係数が左右対称な方程式を相反方程式と言う. 相反方程式は,両辺を 1 x2で割り, x+-=t とおいてt の方程式を導いて解くのが定石である. 解答 x (ア)|x2-3|=-2√2のとき,左辺≧0 なので, r≦0 のもとで x²-3=-2√2x x²-3=2√2x つまり2+2/2x3=0と2√2x3=0 を解けばよい. x0 を満たすものを求めて, x=-√2-√5/√2-√5 (イ) 第1式から,x=-2y-5・・・・・① であり, 第2式に代入して (-2y-5)2+(-2y-5)y+y2=16 . 3y2+15y+9=0 :y2+5y+3=0 -5±√13 よって,y= であり,①に代入して, x=千 13 (複号同順) 2 ←前文で述べた言い換えを使った. 2/20 を忘れないように. ←係数にルートが入っていても解 の公式は使える. 等式の条件は1文字を消去する のが原則. yの±とェの王において, 上側 ←同士と下側同士が対応する. 方程式の左辺はx=0のとき3で 0にはならない。 |-44=0 (ウ) x=0は解ではないから, 方程式の両辺を (0) で割って, .. 3x2+5x-44+ + 5 3 0 x² IC 3{(x+1)-2} +5(x+2)-44- (t+5)(3t-10)=0 (+2)+(+税) 44=0 .. 3t+5t-50=0 it=-5, 10 3 xtの符号は一致するので,最小の解はt=-5を満たす. + -5-21 り,x2+5x+1=0 この小さい方の解が答えで,= 2 1 演習題(解答は p.54) -=-5によ IC 両辺を倍して整理した. (ア) 連立方程式|x+2+y=1,y2-2x=6を解け (大阪工大 情報科学 ) (イ) 4次方程式-6x2+18 +9=0 ① の解を求める. x=0は①の解でな いから,t=xt によっておき換えることにより, tについての2次方程式 I (ア) 1文字消去.

解決済み 回答数: 1
数学 高校生

統計的な推測 Zは近似的にN(0,1)に従うと書いてある場合と普通に ZはN(0,1)に従うと書いてある場合があります。 この二つをどう使い分ければいいのか教えてください。

基本例 例題 母平均 0. 88 大数の法則 - 555 00000 母標準偏差をもつ母集団から抽出した大きさんの標本の標本平均 ýが0.1以上0.1以下である確率 P(|X|≦0.1) を, n=100, 400, 900 の各場 合について求めよ。 指針 ・基本 80, p.549 基本事項 m=00=1であるから、標本平均又は近似的に正規分布 N (0, 1/2)に従う。 n=100, 400, 900 の各場合について, 正規分布 N(m,d')はZ=X-mでN(0, 1)へ[標準化] に従い, 確率 P (|X| ≦ 0.1) を求める。 O n=100,400,900 は十分大きいと考えられる。 解答 n=100 のとき,X は近似的に正規分布 N(0, 100) に X 従うから,Z= 1 10 とおくと, Zは近似的にN(0,1) に従う。 よって P(|X|≦0.1)=P(|Z|≦1)=2p(1) =2.0.3413 =0.6826 P(X|≦0.1) =P(0.1) =P(|Z|≦1) n=400 のとき,Xは近似的に正規分布 N0, に 400 X 1 20 従うから, Z= とおくと, Zは近似的にN(0, 1) に従う。 よって P(|X|≦0.1)=P(|Z|≦2)=2p(2) 2章 母集団と標本 ①~③ から, nが大きくな るにつれて =2•0.4772 =0.9544 n=900 のとき,X は近似的に正規分布 N(0, 900 1 に 検討 ☑ 従うから, Z=- とおくと, Zは近似的に N(0, 1) 78.0 30 に従う。 よって P(|X|≦0.1)=P(|Z|≦3)=2p(3) =2.0.49865 =0.9973 ③ P(X|≦0.1) が1に近づくこと,すなわ 大数の法則が成り立つ (標本平均 Xが母平均 0 に 近い値をとる確率が1に近 づく)ことがわかる。 練習 さいころを回投げるとき、1の目が出る相対度数を R とする。n=500, 2000, 88 4500の各場合について, PR--//sono) の値を求めよ。

解決済み 回答数: 1
数学 高校生

電気分解の問題で、なぜ水原子が還元されると水素原子が発生して、水原子が酸化されると酸素原子が発生するのかよく分かりません。化学反応式のたてかたがよく分かりません。反応後にどのような物質が出てくるのかいまいちよく分かりません。電気分解のしくみをよく理解できていません。 わかり... 続きを読む

[解説] 電気分解の電極反応 ・陰極での反応 (還元) ① 水溶液中に水より還元されやすい金属イオン(Ag+, Cu2+) が存在する場合、 そのイオンが還元される。 例 Cu2+ +2e→ Cu ②水溶液中に水より還元されやすい金属イオンが存在 しない場合, 水分子が還元される。 例 2H2O + 2e → H2 + 2OH- ※水溶液が酸性のときは H+ が還元される。 例 2H+ + 2e→H2 • 陽極での反応 (酸化) ① 電極が Cu, Ag の場合は,電極が酸化されて溶解 する。 例 Cu- → Cu2+ + 2e¯ ② 電極が Pt, Cの場合は,電極は酸化されない。 ハロゲン化物イオンが存在する場合は,ハロゲン化 物イオンが酸化される。 例 2C → Cl2 + 2e¯ ハロゲン化物イオンが存在しない場合は、水分子が 酸化される。 例 2H2O→O2 + 4H + + 4e ※水溶液が塩基性のときはOHが酸化される。 例 40H→ O2 + 2H2O + 4e_ 249 (1) 陰極・・・Cu2+ +2e→ Cu 陽極・・・ CuCu2+ + 2e- (2) ウ 250 (1) 6.0×102C (2) 8.0分間 [解説] 電気量 (C) = 電流(A) × 時間 (s)

解決済み 回答数: 1
数学 高校生

なぜ赤で囲まれたところでは、.... <(1/3)^n(3-a1)なのに回答では<=になっているのか? ChatGPTに聞いてみたけどよくわかりませんでした。教えて欲しいです

重要 30 漸化式と極限 (5) ・・・はさみうちの原理 00000 数列 (a) が 03.42=1+1+α (n=1, 2, 3, ......) を満たすとき (1) 03を証明せよ。 ((3) 数列{an) の極限値を求めよ。 指針 (2) 3-** <1/12 (3-2)を証明せよ。 [ 神戸大] p.34 基本事項 基本 21 ① すべての自然数nについての成立を示す数学的帰納法の利用。 (2)(1)の結果、すなわち、3-0であることを利用。 (3) 漸化式変形して、一般項αをの式で表すのは難しい。そこで、(2)で示した 不等式を利用し、はさみうちの原理を使って数列 (3-α)の極限を求める。 はさみうちの原理 すべてのnについて Disastのとき limp = limg =α ならば なお,p.54.55の補足事項も参照。 lima-a 53 CHART 求めにくい極限 不等式利用ではさみうち 2章 数列の極限 解答 (1) 0<an<3 ...... ① とする。 [1] n=1のとき,与えられた条件から①は成り立つ。 [2] n=kのとき,①が成り立つと仮定すると 0<ak <3 nk+1のときを考えると, 0<ak<3であるから ak+1 1+1+ak >2>0 ak+1=1+1+ak <1+√1+3=3 したがって 0<ak+1 <3 < よって, n=k+1のときにも①は成り立つ。 [1], [2] から, すべての自然数nについて ①は成り立つ。 (2)3-αn+1=2√1+an = 3-an 2+√1+an </13- <1/3 (3-4) \n-1 lim (3)(12) から, n≧2のとき no 3 1\n-1 したがって 03-am = (1/3) =(1/2) (301) (3-α1) = 0 であるから lim(3-an)=0 N1X liman=3 n→∞ 数学的帰納法による。 <0<a<3 <<αから√1+ax >1 <3から√1+αk <2 3-a>0であり,an>0 から an> n≧2のとき, (2) から 3-and- an< (3-an-1) (1/2)(3)……… \n-1 (1/2)(3) 3 =2, n=2のとき a2= 2/2 am1-1/2 を満たす数列{an)について すべての自然数nに対してan>1であることを証明せよ。 「類 関西

解決済み 回答数: 1