学年

教科

質問の種類

数学 高校生

これの(2)の解き方の考え方を教えて欲しいです。

C1-40 (226) 第3章 平面上の Think 題 C1.22 ベクトルと軌跡 平面上に△ABC があり, 実数kに対し、 12p=46+5c-kc-b) 3PA +4PB+5PC=kBC を満たして動く点Pがある。このとき,次の問いに答えよ. (1) kがすべての実数値をとって変化するとき, 点Pの描く図形を図示 せよ. (2)△PAB, △PBCの面積をそれぞれ, S, S2 とするとき S:S2=1:2 となるようなkの値を求めよ. 考え方 (1) 点Aを基点として,AB=AC=CAP= とおいて与式に代入し、 の形に変形するは,を通りに平行な直線) 解答 wwwwwwwww (2) △ABCの面積をSとし,まずは S, S2 をそれぞれSで表す。 (1)点Aを基点とし,AB=1, AC=C, AP= とおく. 3PA+4PB+5PC=kBC より 3(-)+4(-)+5c-p)=k(c-b) AP: AQ=3:4 ...... ② より 4 41 38' 3 ベクトルと図形 (227) C1-41 **** であるから,S:S2=12 のとき, ST -S 80 △ABQの面積を S3 とすると, もう片方を特定 したがって, BQBC=1:6 ...... ③ 次に, ①を変形すると, △ABC: △ABQ =BC: BQ 0 んを含まない部分 12 46+5cc-6) ......1 (動かない) と, kを含 12 む部分(動く)に分け 49 3.46+52 (-b) る. -5-(-6)=5¬BC 9 12 9 10 A AP= (4+k)+(5-k)c 12 であり,②より ATH 0 AQ=1/AP=12(4+k)+(5-k)c 3 (4+k)b+(5-k)c よって, 交点の付 9 BQ=AQ-AB 12 (4+k)b+(5-k)c 一言 上の点である. 9 より,Qは直線 BC 点PがABCの内部 の場合と外部の場合が ある. 45246 第3章 4+k 5-k_9 1 9 9 9 RA 12 3-4 A 線分 BC を 54 に内分する点を D, 線分AD を だからBQBC-156k1 ORO 9 3:1 に内分する点をEとすると, wwwwwwwww A ADBC-AEBC 002+111.015-k=1 6 GO+AO-1 FP G wwww よって,点Pは点E を通り辺BC に平行な直線上 にある. RIA 3 5-k=± Q E 6 + P 11 その直線と辺 AB, AC の交点を F, Gとすると, AF: FB=AG: GCA B 5-D--4-C よって、 k = 1/12 1/27 7 13 2' =AE ED =3:1 であるから,点Pの描く図形 は、 右の図の直線 FG である. F P B PF G Q1B C kがすべての実数値を とるので,直線 FG と なる. 注》頂点Bを基点とし、BA=BC=BP=_ とすると 3PA+4PB+5PC-kBC 1, 3(a-p)+4(-p)+5(c-p)=kc となる. 5-k P この式を整理すると, 12 よって、点Pは,辺AB を 3:1に内分する点 F を通り直線 BC に平行な直線上を動く. B C 練習 01.22 ABCがあり実数kに対して、点PがPA+2P+3PC=kAB を満たすも B1 B2 ADDを求めよ C1 (2)直線APと直線BCの交点をQ とすると, FG/BC より AQ:PQ=AB:FB=4:1 したがって,△ABCの面積をSとすると,点Pが どこにあっても,△PBC の面積 2 は一定で, S= s

回答募集中 回答数: 0
数学 高校生

このまるで囲ってる2・5って何を意味するんですか? 問題は2枚目の⑶です

直線lと円 K: x+y-8x-6y=0 .... ② B の交点A,Bのx座標は,①,②より,yを 消去して得られる方程式 00 x²+(x+5)-8x-6(-1 1 x + 25)=0 の実数解である。これを解くと 3 9x2+(-4x+25)-72x-18(-4x+25)=0 x-8x+7=0 (x-1)(x-7)=0 x=1,7 条件より, 点Aのx座標がx=1,点Bのx座標が x=7 であるから, ①より 4y-3=- 1/(x-4)を展開 せずにそのまま円 K の方程式 (x-4)+(y-3)"=52 に代入 (x-4)2+{-1/(x-1)}= (x-4)²=9 x-4±3 A (1, 7), B(7, -1) y = -. 4 25 x+ 3 A(1, 7), B(7, -1) x=1,7 と計算してもよい。 完答への 道のり 直線OCの傾きから、直線の傾きを求めることができた。 直線lの方程式を求めることができた。 直線 l と円 K の方程式を連立させて、2交点 A,Bのx座標を求める 2次方程式を立てることがで ① 2 交点 A, B の座標を求めることができた。 (3) 点Dは第1象限にあるから, 点Dの座 標は (s, t) (s> 0, t > 0) とおける。 AV △ABD は正三角形であるから AD'=BD=AB2 AD=BD2 より (s-1)+(t-7)=(5-7)+(t+1)2 12s-16t=0 3 t= -s AD2 = AB2 より (s-1)+(-7)=(2-5)2) s2 +t2-2s-14t-50=0 ③④に代入して ③ ? s2+(21s)-2s-14・4/4s-50= 0 s2-8s-32=0 A(1, 7) K \C(4,3) <B (7, -1)+ 2点間の距離 2点(x1,y1)(x2,y2)の間の √(x2-x1)+(y2-yl) 線分ABの長さは円Kの 等しい。 6.8 |16s2+9s2-32s-168s-800 25s2-200s-800 = 0

解決済み 回答数: 2