学年

教科

質問の種類

数学 高校生

ここで、(i)〜  と書いてある部分が、なぜそうなるのかわかりません。図などを使ってわかりやすく教えてくださると助かります🙇‍♀️

例題 175 三角形の個数 右の図のように4本の平行線と5本の平行線 が等間隔で交わっている。これらの交点を結ん で三角形を作るとき,三角形はいくつできるか そのとき,三角形ができない3点の組合 せがあることに注意する. |解答 交点の数は, 4×5=20 (個) このうち, 3点を選ぶ選び方は, 考え方 交点の数は全部で, 4×5=20 (個) ある. ここから3点選んで三角形を作るが, 3点が一直線上に並 ぶと三角形はできな い。 4本の直線と5本の 直線の交点 20C3= 20-19-18 3.2.1 =1140(通り) ここで, (i) 5 点がのる直線は4本 (ii) 4 点がのる直線は9本 (Ⅲ) 3点がのる直線は 8本 あり, これらの同一直線上から3点を選んだ場合には三角 形ができない. 同一直線上に3点以 上の点があることが あるかどうか調べて (注》 を参照) (i)のときの3点の選び方は, 5C3×4=40 (通り) (i)のときの3点の選び方は, 4C3×9=36(通り) (Ⅲ)のときの3点の選び方は, 3C3×8=8 (通り) よって, 求める総数は, 1140-(40+36+8)=1056 (個) 注> もともとある直線以外にも3点が同一直線上に並ぶ場合があることに注意しよう. # # 第6号

回答募集中 回答数: 0
数学 高校生

ちんぷんかんぷんです。

例題15 二項係数の関係式(2) **** nを正の整数として,次の等式を証明せよ. (1)C2+,C2+,C2+,C32++„C2=2Cn (2) 2≦n,r= 1, 2, …………, n-1 のとき, C,="-1C,+n-1Cr_1 考え方 (1) (1+x)2"=(1+x)". (x+1)" であるから, (1+x)2" の展開式における x”の係数と、 解答 Focus (1+x)"×(x+1)" の展開式におけるx”の係数は一致する. (2)(1+x)=(1+x)(1+x)"-1であり、両辺のxの係数は一致する. (1) 二項定理(a+b)"="Coa"+"Cia" 'b+"Caa"-262+......+"C„b" において、 a=1, b=x とおくと, (1+x)"="Co+,Cix+nC2x2+....+nCnx" a=x, b=1 とおくと (x+1)"="Cox"+"Cix”-1+nCzx"-2+.. (1+x)2" = (1+x)"(x+1)" が成り立ち, (1+x)2" の展開式におけるx”の係数は 27 Cn ... ① また, (1+x)". (x+1)" =(nCo+"Cix+n2x++〃nx") („Cox" + "C₁x" + "C₂x" - 2 + .....+nCn) の展開式における x” の係数は, nCoXnCo+miXn1+C2X2+......+nCn×nCn =nCo2+ "Ci2+nC22+, 32 ++,C2 ...... ② ①,②は一致するから, no2+12+2+„C32++Cn2=2nCn (2)(1+x)"=(1+x) (1+x)"-1 である. (右辺) = (1+x) (n-1Co+n-1Cix+n-1C2x2+ の展開式におけるxの係数は,2≦n,r=1,2, n-1 -1Cr+n-1Cr-1 である. +nCn +n-1Cn-1x-1) (E) ......,n-1より、 これは,左辺 (1+x)" の展開式における x”の係数,C, と一致する. よって, 2≦n,r= 1, 2,.......n-1のとき Cr=n-Cr+1Cr-1 . (1+x)^n=(1+x)"(x+1)", (1+x)"= (1+x) (1+x)" などの 展開式における係数から、二項係数のいろいろな関係式が生まれる 注〉 (2) C-1C,+n-1Cr-」 が表す意味 人の中から人を選ぶ方法 (,,通り)は、ある特定の1人を含まないつまり、 残り (n-1)人の中から人を選ぶ方法 (7-1C,通り)とその特定の1人を必ず 含む、つまり、残り(n-1) 人の中から (r-1) 人を選ぶ方法 ( わせたものである。 通り)を合

回答募集中 回答数: 0