学年

教科

質問の種類

数学 高校生

第2問(2)のコサシスセソについてです。 2枚目の解答の波線部分がよく分からないので、分かる方がいらっしゃったら教えて頂きたいです🙇‍♀️

第2問~第4問は、いずれか2問を選択し、 解答しなさい。 第2問 選択問題 (配点20) 図1のように、東西南北に作られた碁盤の目状の道路があり、交差点と交差 点の間の1区画の距離は1km である。 0° 0 が対応している。 .P 北 図1 地点Oから地点P までの最短経路について考えてみよう。 東に1区画進むことを「→」,北に1区画進むことを「↑」と表すことにすると 一つの最短経路に対して、「→」3個 「1」 3個の並べ方が一つ対応するので最 短経路の総数はアイ通りと求められる。 東 西 最短経路の距離は6km であるが,初めて地点Pに到達するまでの距離が8km になるような経路の総数はいくつになるだろうか。 ただし, 図1の道路のみを移 動し、交差点以外の場所で進む方向を変えないこととする。 例えば、距離が8km になるような経路には図2、図3のような場合がある。 P P 南 図2 図3 西に1区画進むことを 「←」 南に1区画進むことを「↓」と表すことにし, 経 路に対応した←↑↓の順列を道順ということにすると 図2の経路には, 道順→↑←↑→→→↑ 図3の経路には, 道順 →↑↑→↓→↑↑ (第6回3) (数学Ⅰ・数学A 第2問は次ページに続く。) (1) ↑↓の順列には対応する経路が存在しないものも含まれる。 例えば、道 には対応する経路がない。 ウ 順 HO I と する。 I nom O ② ↑↑↑↓→→1③→→→1→1-1- の解答群 (解答の順序は問わない。) オ ↑→↓→↑↑↑ 2017 (2) 図2のように, 「←」 が含まれるような道順の総数を考える。ただし、例えば, 道順が→→→↑↑↑← → のように最短経路で地点Pに到達した後、1kmの区 仕復して再び地点Pに到達する経路も含めて考える。 」か「↑」 が3個の順列が一つ対応 一つの経路には、「 T20 2015 40ATEMONEY (1) での考察から 「→」が4個, 「←」 が1個の5個については、 並びにオ という制約があるので,「→」が4個,「←」が1個の5個の並び方は カ 通りある。 $33458200% AS これに 「↑」を含めた8個を並べると, 「←」が含まれる道順の総数はキクケ 通りある。 同様に考えると、図3のように,「↓」が含まれる道順の総数はコサシ 通 01030943-1 りある。 したがって 初めて地点Pに到達するまでの距離が8km になるような経路 の総数はスセソ 通りと求められる。 ① tttt→→ の解答群 + は左端にのみ並ばない 「←」は左端にも右端にも並ばない (第6回4) JUTUSA ① 「←」は右端にのみ並ばない

回答募集中 回答数: 0
数学 高校生

244. この問題において、Dを求めることって必要ですか? 実際この問題はDを求めずとも答えに辿り着けるし、 他の教材等で同様の問題の解答を見たときDについて調べていなかったのですが、必要なのでしょうか??

372 基本例題 244 面積の最大最小 (1) 点 (1, 2) を通る直線と放物線y=x² で囲まれる図形の面積をSとする。 S AA ARŠNODUR 小値を求めよ。 指針 点 (1,2) を通る直線の方程式は,その傾きを m とすると,y=m(x-1)+2と表され まず, この直線と放物線が異なる2点で交わるとき, 交点のx座標α, BでSを表す。 このとき, 公式f(x-a)(x-3)dx=-12 (B-α) が利用できる。 更に,S を m の関数で表し,mの2次関数の最小値の問題に帰着させる。 解答 点 (1, 2) を通る傾きmの直線の方程式は y=m(x-1)+2 ...... ① と表される。 直線 ① と放物線y=x2 の共有点のx座標は, 方程式 x2=m(x-1)+2 すなわち x2-mx+m-2=0 の実数解である。 この2次方程式の判別式をDとすると D=(-m)²-4(m-2)=m²-4m+8=(m-2)2+4 常に D>0 であるから, 直線 ① と放物線y=x2 は常に異なる 2点で交わる。 その2つの交点のx座標をα, β(α<β) とすると s=${m(x-1)+2-x*}dx=- = -√²₂(x²-₁ T 2-mx+m-2)dx =-f(x-a)(x-B)dx=1/12(B-α) また B-α= m+√√D m-√√√D -=√D=√(m-2)² +4 2 2 したがって, 正の数β-α は, m=2のとき最小で,このとき (B-α)も最小であり,Sの最小値は 1/12 (14)-1/30 adst 7-8-9 adot x2-mx+m-2=0の2つの解をα, β とすると よって ゆえに (B-a)²=(a+β)²-4aβ=m²-4(m-2)=(m−2)²+4 3₁ 点 (1,2)を通りに な直線と放物線y=x^ まれる図形はない。 よって x軸に垂直な直線は考えな てよい。 X=- 検討 β-αに解と係数の関係を利用 S=1/12 (B-4)において, (B-α)の計算は 解と係数の関係を使ってもよい。 a+β=m,aβ=m-2 (1,2) α, βは2次方程式 x²-mx+m-2-00 TS, mt√m²-4m+! 2 S=— (B—a)³= ¹ {(B—a)³²}* = = = {(m−2)² + 4) ³ ≥ — • 4³-4 6 m²-4m+8=D XD-M300 TIROMA

回答募集中 回答数: 0
数学 高校生

カッコ2番について、赤の下線をつけた部分がなぜそうなるのか分からないので教えて下さい!

〔3〕 スキー競技の「モーグル」 は, こぶのある斜面をスタート地点からゴール地点 まで滑り降りかかった時間によるタイム点, ジャンプ演技によるエア点。ターン の技術によるターン点の合計を競う競技である。 下の表は, 2017年に札幌で行われたある大会の上位16人の得点を表している。 タイム点Xは20点満点, エア点Yも20点満点, ターン点Zは60点満点で, 合 計得点 W は 100点満点である。 エア点とターン点は審判の採点によって決まり, タイム点は斜面を滑り降りるのにかかった時間T (秒) によって決まる。 順位 時間(秒) タイムX (点) エアY(点) ターン Z(点) 合計 W (点) 1 16.86 15.26 53.10 85.22 2 16.25 12.85 53.70 3 15.72 14.40 51.60 4 16.86 13.30 (51.20 5 16.04 15.41 49.70 6 15.69 13.47 50.00 7 15.49 13.60 50.00 8 16.14 10.79 (51.20 9 14.44 14.92 48.50 10 16.53 12.48 47.80 11 14.71 12.81 49.10 12 13.60 10.30 42.60 12.37 6.27 43.60 9.35 8.12 41.00 9.80 7.47 39.60 5.93 7.18 42.80 13 14 15 16 22.20 22.63 23.01 22.20 22.78 23.03 23.17 22.71 23.92 22.43 23.73 24.52 25.40 27.55 27.23 29.99 82.80 81.72 81.36 81.15 79.16 79.09 78.13 77.86 76.81 76.62 66.50 62.24 58.47 56.87 55.91 (数学Ⅰ・数学A 第2問は次ページに続く。)

回答募集中 回答数: 0