学年

教科

質問の種類

数学 高校生

この青で囲んだ部分のやつまじでどこから来たのかわかりません。どなたか教えてください

を 223 方 ワイ 増場 [2] a<1≤a+1 001のとき よって はx=1で最大となり M(a)=f(1)=4 次に2<α<3のとき, f(x)=f(a+1)とすると a³6a²+9a-a³ すなわ 2<a<3と5<√33/6に注意して 1.3.0.4+1 4+2² 1713! [3] 1≦a < のとき f(x)はx=αで最大となり 3a²-9a+4=0 _ −(−9) ± √ (−9)²—4•3•4 2.3 a= 9+√33 6 M(a)=f(a)=a³-6a²+9a 近いもの lid 以上から まちがた 9+√33 [4] ≦αのとき 6 f(x)はx=a+1 で最大となり M(a)=f(a+1)=α-3a²+4 u+1使える! [2]y 4 Q= [3]y [4] y 9+√33 a<0, 6 0≦a <1のとき M (α)=4 4F a+α+1)=3から 2 最大 9+√33 1≦a < 6 [3],[4] a≧3≦atlになる 9 土 O 1 3 a+1 9+√33 6 3次関数のグラフの対称性に関する注意 p.344 の参考事項で述べたように, 3次関数のグ ラフは点対称な図形であるが, 線対称な図形で はない。 すなわち, 3次関数がx=pで極値をと るとき 3次関数のグラフは直線x=pに関して 対称ではないことに注意しよう。 上の解答のαの値を 133 6 最大1 2 3 '3 a a+1 a+1 I x ●最大 La+1 a+1 x のとき M (a)=a²-6a²+9a 指針の② [区間内に極大 となるxの値を含み, そ のxの値で最大] の場合 。 ≦a のとき M (a)=a²-3a²+4 指針の⑧ [区間で単調減 少で, 左端で最大] また は ⑩ [区間内に極小とな るxの値がある] のうち 区間の左端で最大の場合。 9+√33 ex= 指針の① [区間内に極小 となるxの値がある] の うち、 区間の右端で最大 の場合、 または指針のA [区間で単調増加で,右 [端で最大] の場合。 3次関数の グラフ f(+1) 設定しろ! 対称ではない 放物線 PICZ (線) 対称 i=212としてはダメ! ] なお、 放物線は軸に関して対称である。 このことと混同しないようにしておこう。 357 dfl 最小値m(t) を求め 6章 3 最大値・最小値、方程式・不等式 ぐの E 委

回答募集中 回答数: 0
数学 高校生

共通テストの問題で分からないところがあります。 写真に分からないところを書いているので、お願いします🙏

22 2023年度 数学Ⅰ・A/本試験 (2) 花子さんと太郎さんは. (1) で用いた赤い長方形を1枚以上並べて長方形を作 り、その右側に横の長さが363 で縦の長さが 154 である青い長方形を1枚以上着 べて、図2のような正方形や長方形を作ることを考えている。 110] 赤 B 462 赤 8 は縦の長さがスセソ の倍数である。 赤 青 赤 青 図 2 : 363 青 青 154 このとき, 赤い長方形を並べてできる長方形の縦の長さと, 青い長方形を並べ てできる長方形の縦の長さは等しい。 よって, 図2のような長方形のうち、縦の 長さが最小のものは, 縦の長さがスセンのものであり, 図2のような長方形 二人は、次のように話している。 2023年度 数学Ⅰ・A/本試験 23 花子: 赤い長方形と青い長方形を図2のように並べて正方形を作ってみよう よ。 太郎 : 赤い長方形の横の長さが462 で青い長方形の横の長さが363 だから, 図2のような正方形の横の長さは462363 を組み合わせて作ること ができる長さでないといけないね。 花子: 正方形だから、横の長さはスセソ の倍数でもないといけないね。 462363の最大公約数は タチであり, タチの倍数のうちで スセソ の倍数でもある最小の正の整数は ツテトナである。 これらのことと、使う長方形の枚数が赤い長方形も青い長方形も1枚以上であ ることから, 図2のような正方形のうち、辺の長さが最小であるものは, 一辺の 長さが ニヌネノのものであることがわかる 19 TO

回答募集中 回答数: 0