学年

教科

質問の種類

数学 高校生

225. 記述式の確率問題を解く際に頻繁に書く 「ーーは互いに排反なので」という文言ですが この問題でもaの値による場合分けをしているので 互いに排反と言えるのでしょうか?

演習 例題 225 不等式が常に成り立つ条件(微分利用) 00000 aは定数とする。 x≧0 において,常に不等式 x-3ax²+4a> 0 が成り立つよう にαの値の範囲を定めよ。 基本220 指針f(x)=x-3ax2+4aとして, PLANS ンの検討 の例題29 解答 f(x)=x²-3ax2+4a とすると =0 とすると f'(x)=0 とすると x=0, 2a 求める条件は,次のことを満たすαの値の範囲である。 「x≧0 におけるf(x) の最小値が正である」 1 のときに [x≧0 におけるf(x) の最小値] > 0 となる条件を求める。 導関数を求め,f'(x)=0 とすると x=0, 2a 02a の大小関係によって, f(x) の増減は異なる から 場合分けをして考える。 コールのとき [1] 2a<0 すなわち α<0のとき x≧0 におけるf(x) の増減表は右のよう になる。 f'(x)=3x2-6ax=3x(x-2a) 270 FT F 72470 Fi ①を満たすための条件は したがって a>0 4a>0 これはα<0に適さない。 [2] 2a=0 すなわち a=0のとき f'(x)=3x2≧0で, f(x)は常に単調に増加する。 を満たすための条件は f(0)=4a>0 これは α = 0 に適さない。 よって a>0 [3] 20 すなわち a>0のとき におけるf(x) の増減 表は右のようになる。 ①を満たすための条件は -4a²+4a>0 0 f' (x) f(x) 4a -4a(a+1)(a-1)>0 a(a+1)(a-1)<0 a<-1,0<a<1 0<a< 1 ゆえに よって これを解くと a> 0 を満たすものは [1]~[3] から 求めるαの値の範囲は 0 2a<0 x f'(x) + f(x) 4a > 0<a<1 2a0x 2a 0 -4a³+4a/ + 2a=0 x 注意 左の解答では, [1] 2a<0, [2] 2a=0, [3] 2a>0 の3つの場合に 分けているが, [1] と[2] を まとめ, 2a≦0, 2a>0 の場 合に分けてもよい。 なぜなら, 2a≦0のとき, x≧0ではf'(x)≧0 であるから, x≧0でf(x) は 単調に増加する。 -1 ゆえに, x≧0 での最小値は f(0) =4a である。 実際に左 の解答 [1] と [2] を見てみ ると,同じことを考えている のがわかる。 a (a+1)(a-1)の符号 + < a>0 のとき i 0 2a x 0<2a a(a+1)>0 ゆえに a-1 <0 としてもよい。 1 a 343 6章 3 関連発展問題 38

未解決 回答数: 1
数学 高校生

223. このような記述でも問題ないですよね? またこの問題での接線を求めるときのプロセス、 ①接線の座標を仮定して接戦の方程式を立てる ②接線が通る点の座標を代入 ③微分を用いて求める という順番で進むのは一般的ですか??

演習 例題223 3本の接線が引けるための条件 (1) 曲線C:y=x+3x2+x と点 A(1, a) がある。 Aを通ってCに3本の接線が引 けるとき,定数aの値の範囲を求めよ。 [類 北海道教育大] 1970 基本 218 である。 る。 指針▷ 3次関数のグラフでは、接点が異なると接線が異なる(下の 検討 参照) から, 曲線CA (1,α) を通る3本の接線が引ける 針の① の 曲線C上の点 (t +3t'+t) における接線が A を通るようなtの値が3つある そこで, 曲線C上の点(t, t3+3t+t) における接線の方程式を求め,これが点 (1,α) を 通ることから, f(t)=a の形の等式を導く。 ・・・・・・ CHART 3次曲線 接点 [接線] 別なら 接線 [接点] も別 解答 y=3x2+6x+1であるから, 曲線C上の点(t, 3+ 312+t)に おける接線の方程式はy-(t+3t+t)=(32+6t+1)(x-t すなわち y=(3t2+6t+1)x−2t−3t2 ばよい。 この接線が点 (1,α) を通るとすると -23+6t+1=α ... ① f(t)=-2t+6t+1とすると f'(t)=-6t2+6=-6(t+1)(t-1) f'(t)=0 とするとt=±1 f(t) の増減表は次のようになる。 -1 1 0 |極大 5 .... 0 + 極小 -3 7 - 5 t f'(t) -3 f(t) 3次関数のグラフでは,接点が異なると接線が異なるから, もの3次方程式 ① が異なる3個の実数解をもつとき, 点Aか ら曲線Cに3本の接線が引ける。 したがって、曲線 y=f(t) と直線y=α が異なる3点で交わる 条件を求めて -3<a<5 -1/0 +トー の解 1 y=a t - Ku y=f(t) 定数 αを分離。 f(-1)=2-6+1 = -3, f(1)=-2+6+1=5 ①の実数解は曲線 y=f(t) と直線y=α との 共有点の座標。 検討 3次関数のグラフにおける, 接点と接線の関係 3次関数y=g(x)のグラフに直線y=mx+nがx=α, β (αキβ)で接すると仮定すると g(x)-(mx+n)=k(x-a)²(x-B)² (k=0) ←接点 重解 の形の等式が成り立つはずである。 ところが, この左辺は3次式, 右辺は4次式であり矛盾して いる。 よって,3次関数のグラフでは, 接点が異なると接線も異なる。 the これに対して, 例えば4次関数のグラフでは、 異なる2点で接する直線がありうる (前ページの 61 3 関連発展問題 38

回答募集中 回答数: 0
数学 高校生

225. [2]で、f(x)は常に単調増加する、というのは 「x≧においてf(x)は常に単調増加する」ということですよね? y=x^3は極値は持たないけど単調増加でも単調減少でもないですよね??

t)(x-t) その 鹿児島大 演習 223 道 219 参照。 すると き, t = 0, [u [の] ~極大,他方で引 のとき ると 3 演習 例題225 不等式が常に成り立つ条件(微分利用) 0000 aは定数とする。 x≧0 において,常に不等式 x-3ax²+4a>0が成り立つよう にaの値の範囲を定めよ。 のとき 指針f(x)=x-3ax2+4aとして, 検討参照。 [1] 2a < 0 すなわちα<0のとき (神号同側) [x≧0 における f(x) の最小値] > 0 となる条件を求める。 導関数を求め,f'(x)=0 とすると x=0, 2a 02a の大小関係によって, f(x) の増減は異なる から 場合分けをして考える。 解答 f(x)=x-3ax2+4a とすると f'(x)=3x²-6ax=3x(x-2a) ......... f(x)=0 とすると x=0, 2a 求める条件は,次のことを満たすαの値の範囲である。 「x≧0 におけるf(x) の最小値が正である」 ・・・ (1) ①を満たすための条件は x≧0 におけるf(x) の増減表は右のよう になる。 ① を満たすための条件は したがって a>0 これはα<0に適さない。 [2] 2a=0 すなわち α = 0 のとき f'(x)=3x2≧0, f(x)は常に単調に増加する。 f(0) = 4a>0 4a>0 よって a>0 [ [3] 20 すなわちa>0のとき x≧0 におけるf(x) の増減 表は右のようになる。 ①を満たすための条件は -4a³+4a>0 これはα=0 に適さない。 20 f'(x) f(x) 4a -4a(a+1)(a-1)>0 a(a+1)(a-1) <0 a<-1,0<a<1 ゆえに よって これを解くと 0<a<1 a> 0 を満たすものは [1]~[3] から,求めるαの値の範囲は 2a<0 x 0 f'(x) + f(x) 4a > 2a 0 -4a³+4a 0<a< 1 1 /1 NJ 2a0x + 2a=0 242x-x 16 がx≧0 に対して常に成り立つ - -1 [注意] 左の解答では, [1] 2a<0, [2] 2a=0, [3] 2a>0 の3つの場合に 分けているが, [1] と[2] を まとめ, 2a≦0, 2a>0 の場 合に分けてもよい。 なぜなら, 2a≦0のとき, x≧0では f'(x)≧0 であるから, x≧0でf(x) は 単調に増加する。 ゆえに,x≧0 での最小値は f(0) =4a である。 実際に左 の解答 [1] と [2] を見てみ ると,同じことを考えている のがわかる。 + a (a+1)(a-1)の符号 0 基本220 < a>0のとき a(a+1)>0 0<2a 02ax ゆえに a-1 <0 としてもよい。 1 a 343 638 関連発展問題 6章

回答募集中 回答数: 0
数学 高校生

223.) この問題で記述している 「三次関数のグラフでは接点が異なると接線が異なる」 というのは一つの接線で2つの接点を持つ方程式も存在するが、3時間数は全てそうではない、ということですか??

43の考え方で s, f(s))で接する で接するとして 致する。 =(x-8)(x-1) 下の別 は え方によるものである。 ▼st を確認する。 方程式は x-31¹+81³. めの条件は、 方程 である。 をもてばよい。 -21-2) て、 sキナである。 0000 演習 例題223 3本の接線が引けるための条件 (1) |曲線C:y=x+3x2+xと点A(1, α) がある。 Aを通ってCに3本の接線が引 けるとき,定数aの値の範囲を求めよ。 1 本〔類 北海道教育大] 基本 218 -1)-8=-8 から パー 芹求めよ。 「指針3次関数のグラフでは、接点が異なると接線が異なる(下の検討 参照) から, 曲線CA (1,α) を通る3本の接線が引ける ・曲線C上の点 (t + 31+t) における接線が A を通るようなtの値が3つある そこで, 曲線C上の点(t, における接線の方程式を求め,これが点 (1, a) を +362+t) 通ることから, f(t) =αの形の等式を導く。 。 ********* CHART 3次曲線 接点 [接線] 別なら 接線[接点] も別 解答 y=3x2+6x+1であるから, 曲線C上の点(t, ピ+3t2+t) に おける接線の方程式はy-(t+3t+t)=(3t2+6t+1)(x-t) y=(3t2+6t+1)x-2t-3t2 すなわち この接線が点 (1,α)を通るとすると -2°+6t+1=α ① 定数 αを分離。 f(t)=-2t+6t+1 とすると Fit Maasto f'(t)=-6t2+6=-6(t+1)(t-1) f'(t)=0 とすると f(t) の増減表は次のようになる。 t=±1 ( t f'(t) f(t) -1 1 0 + 0 極小 極大 7 -3 5 ... - 5 1 -1/0; 1 y=a t |y=f(t) 3次関数のグラフでは、 接点が異なると接線が異なるから, の3次方程式 ①が異なる3個の実数解をもつとき, 点Aか ら曲線Cに3本の接線が引ける。 したがって、曲線 y=f(t) と直線y=α が異なる3点で交わる 条件を求めて -3<a<5 <f(-1)=2-6+1=-3, f(1)=-2+6+1=5 < ① の実数解は曲線 y=f(t) と直線y=α との 共有点の座標。 検討 3次関数のグラフにおける, 接点と接線の関係 3次関数y=g(x)のグラフに直線y=mx+nがx=α,β (αキβ)で接すると仮定すると g(x)−(mx+n)=k(x-a)²(x−ß)² (k=0) ←接点⇔重解 の形の等式が成り立つはずである。ところが、この左辺は3次式,右辺は4次式であり矛盾して いる。よって,3次関数のグラフでは, 接点が異なると接線も異なる。 これに対して, 例えば4次関数のグラフでは, 異なる2点で接する直線がありうる ( 前ページの 演習例題222 参照)。 したがって,上の解答の の断り書きは重要である。 練習点A(0, α) から曲線 C:y=x-9x2+15x-7に3本の接線が引けるとき,定数 73sceto() 223 aの値の範囲を求めよ。 341 6章 3 関連発展問題 38

回答募集中 回答数: 0