学年

教科

質問の種類

数学 高校生

24. [2] なぜa=b=cならば abc≠0を満たすすべての実数a,b,cについて成り立つ と言えるのですか? また、a≠0,b≠0,c≠0でなければならないのを まとめてabc≠0と表しているのですか?

44 基本例題 24 比例式と式の値 (1) x+y_y+z_z+x (0) のとき, 6 (2) 解答 (1) 5 b+c a x+y 5 よって = a 練習 3 24 指針 条件の式は比例式であるから, 比例式は=kとおくの方針で進める。 A (1) = とおくと x+y=5k, y+z=6k,z+x=7k これらの左辺は x,y,z が循環した形の式であるから、Aの辺々を加えてみる>まず、結 (1) a, E すると, x+y+z を k で表すことができる。 右下の 検討 参照。 (2) も同様。 - c+a b y+z 6 (2) 分母は0でないから b+c a+b C (1) x+y=5k ① +② +③ から 2(x+y+z)=18k したがって x+y+z=9k ④-②, ④-③, ④-① から, それぞれ d) A x=3k, y=2k, z=4k c+a b a+b C z+x 7 ①,y+z=6k xy+yz+zx 6k²+8k² +12k² ) x2+y2+22 6 (2)__a+1 -=kとおくと, k=0で a のとき、この式の値を求めよ。 b+c=ak ① +② + ③ から 2(a+b+c)=(a+b+c)k よって (a+b+c) (k-2)=0 a+b+c=0 または k=2 ゆえに [1] a+b+c=0のとき b+c=-a よって k= (3k)²+(2k)²+(4k)² 26k2 26 29k2 29 abc≠0 b+c_a =kとおくと ①,c+a=bk ・②a+b=ck a xy+yz+zx x2+y2+22 ②,z+x=7k ...... db=2,sld =-1 x+y=y+z_z+x 7 b+1 [2] k=2のとき, ①-② から a=6* ②-③ から b=c よって, a=b=cが得られ, これは abc≠0 を満たすすべ ての実数a,b,c について成り立つ。 [1], [2] から,求める式の値は 8 -1, 2 a+b+d (0) m2. の値を求めよ。 AFFE DE 7th- bo-do x²-1² 要例題 C abc=1, であること a+b+c 検討 ①~③の左辺は, x, 循環形 ( x y zxd 次の式が得られる)に いる。 循環形の式は、 加えたり, 引いたり 処理しやすくなること ART <x:y:z=3:2:41 答 3・2+2.4+4・3 32 +22+42 と計算することもで (2) a, abc≠0⇔a=0 かつ 60 かつ よって, ること P=(a- bc=1と 0の可能性があるから 両辺をa+b+cで割 はいけない。 (*)k=2のとき, ①, よって a=b (分母) 0の確認。 って したがって _Q=(a- b+c=2actoに P ここで,( a² +6² F この2式の辺々を引よって b-a=2(a−b) したがっ 5 5 a

回答募集中 回答数: 0
数学 高校生

129. 記述これでも大丈夫ですか??

JUL 510 OS 00000 基本例題1291次不定方程式の応用問題 3で割ると余り, 5 で割ると3余り, 7で割ると4余るような自然数nで最小の ものを求めよ。 指針▷ 基本 127,128 が共通の数。 8が最小である。 3で割ると2余る自然数は 2,5, 8, 11, 14, 17, 20, 23, 5 で割ると3余る自然数は 3, 8, 13, 18,23, よって、「3で割ると2余り, 5 で割ると3余る自然数」を小さい順に書き上げると 3と5の最小公倍数 15 ずつ大きくなる。 A8, 23, 38, 53, 68, また, 7で割ると4余る自然数は B 4, 11, 18, 25, 32, 39,46,53, A,B から、求める最小の自然数は53 であることがわかる。 このように、書き上げによって考える方法もあるが,条件を満たす数が簡単に見つからな い (相当多くの数の書き上げが必要な) 場合は非効率的である。 -110/ そこで,問題の条件を1次不定方程式に帰着させ、その解を求める方針で解いてみよう。 CTORUTSJEFE 解答 nはx,y,zを整数として,次のように表される。 注意x+2=5y+3 3)=0 S&TS 5y+3=7z+4 n=3x+2, n=5y+3, n=7z+4 小 3x+2=5y+3 から 3x-5y=1 x=2, y=1は, ① の整数解の1つであるから 3(x-2)-5(y-1) = 0 すなわち 3(x-2)=5(y-1)x 3と5は互いに素であるからんを整数として, x-2=5kと表 される。よって x=5k+2(kは整数) ② bom) 3(5k+2)+2=7z+4 ② を 3x+2=7z+4に代入して ゆえに z=-8, k=-4 は、 ③の整数解の1つであるから 7(z+8)-15(k+4)=0 すなわち 7(z+8)=15(+4) 7と15 は互いに素であるから, lを整数として,z+8=157 と 表される。 よって z=151-8 (Zは整数) (Thom) これをn=7z+4に代入して n=7(157-8)+4=1057-528 最小となる自然数nは, l=1 を代入して 53 TE bom) 85-= として解いてもよいが,係 数が小さい方が処理しやす い。 このときy=3k+1 x-7z=2から 7z-15k=4...... ③③ A+ASA-=(A+10)-06-3(x-3)−7(z−1)=0 ゆえに, Zを整数として x=7l+3 これと x=5k+2 を等置し て 5k+2=7l+3 よって5k-71=1 これより, k, lが求められ るが, 方程式を解く手間が 1つ増える。 検討 百五減算 2+(3=376)00=1+00=178 ある人の年齢を3,5,7でそれぞれ割ったときの余りをa,b,c とし, n= 70α+216+15c とす る。このnの値から 105 を繰り返し引き, 105より小さい数が得られたら、その数がその人の年 齢である。 これは 3,5, 7で割った余りからもとの数を求める和算の1つで、 百五減算と呼ばれ る。なお,この計算のようすは合同式を用いると,次のように示される。 求める数をxとすると, x=a (mod3), x=6 (mod5) x=c (mod7) であり, n=70a=1•a=a=x (mod 3), n=21b = 1.b = b = x (mod 5), n=15c=1+c=c=x (mod 7) よって, n-xは3でも5でも7でも割り切れるから, 3, 5, 7 の最小公倍数 105 で割り切れる。 ゆえに,を整数として, n-x=105k から x=n-105k このkが105を引く回数である。 TRON 練習 3で割ると2余り,5で割ると1余り, 11で割ると5余る自然数nのうち (3) 129 1000 を超えない最大のものを求めよ。 どのよう できない 3m よー 解答 mnは食 [1] n= よって, x=3m- [2] n= ここで. よって ......) [3] n= ここで よって ......) [1]~[3] 形に表す よって, したが一 (検討 次ペー しかし 然数も なお、 a

回答募集中 回答数: 0
数学 高校生

互いに素の時どちらかにマイナスをつけなければならないのはわかっているのですが、今回は答えと違う式の方にマイナスをつけました。答えと違う方にマイナスをつけると範囲が変わってしまうのですがどうしたらいいですか。

47 花子さんの住んでいる町内で毎年行われているクリスマス会では、参加者全員にスナック菓子を1 袋ずつ配ることになっている。 今年は、花子さんがスナック菓子を買うことになり、1年前のクリス マス会を知っている人に話を聞いた。 1年前は、 参加者は30人で, スナック菓子は, 3袋入りの箱と7袋入りの箱の2種類が売られていた。 3袋入りを箱 7袋入りを箱買うと30人全員に1袋ずつ残さず配ることができたという。ただし, a b はともに0以上の整数とする。 このことから 3a+76=アイ ...... ① が成り立ち、①を満たす a, bの組(a,b) は, (a,b)= ウエ 組だけ存在する。 (1) 花子さんは,参加者が何人であれば、3袋入りと7袋入りの箱をうまく組み合わせて買うことで スナック菓子を参加者全員に1袋ずつ残さず配ることができるかに興味をもった。 参加者全員に1 袋ずつ残さず配ることができない場合について考えよう。 3袋入り x 7袋入りを箱買うとする。 ただし,x,yはともに0以上の整数とする。 (i)yが3の倍数のとき、y=3 (は0以上の整数)と表すと 3x+7y= (x+51) であり, 3x+7yと表される数は 以上の3の倍数すべてである。 (ii)yを3で割った余りが1のとき, 31+1 (1は0以上の整数)と表すと 3x+7y=サ (x+シ 1 __ス) +セ (ただし、 >セ であり, 3x+7y と表される数は3で割った余りがソである整数であり,そのうち最小のも のはタである。 ()yを3で割った余りが2のとき, (i), (ii)と同様に考えると, 3x+7y と表される数は3で割っ た余りがチである整数であり、そのうち最小のものはツテである。 (i)~(ii)より, 3x+7y (x, y はともに0以上の整数)と表されない自然数は全部で ト 個ある。 すなわち, 3袋入りと7袋入りの箱をどのような組み合わせで買ったとしても、参加者全員に1 袋ずつ残さず配ることができない参加人数は全部でト通りある。 (2) 今年は別のスナック菓子を買うことにした。 そのスナック菓子は2袋入りの箱5袋入りの箱の 2種類が売られており、中身のパッケージのデザインも異なっていたため、クリスマス会を盛り上 げるため, 2袋入り 5袋入りのどちらも1箱以上買うことになった。 このとき2袋入りと5袋入りの箱をどのような組み合わせで買ったとしても, スナック菓子を 参加者全員に1袋ずつ残さず配ることができない最大の参加人数はナニ人である。 (配点20) 公式解法集 48 OSTO 難易度★★★ SELECT SELECT 90 60 目標解答時間 15分 オ ). ( カ の2

回答募集中 回答数: 0