学年

教科

質問の種類

数学 高校生

なぜ赤マークのようになるのですか??

84 基本 例題 16 数字の順番 00000 あり、これらの整数を小さい順に並べたとき, 40番目の数はであり、 5個の数字 0, 1, 2, 3, 4 を並べ替えてできる5桁の整数は、全部で 32104 は 1番目の数である。 CHART & SOLUTION 数字の順番 要領よく数え上げる [四日市大] 基本14 (イ) 一番小さい 10234 から順列 (整数) の個数が40個になるまで適当なまとまりごとに個 数を数えていく。 →まず、万の位の数字を1で固定した場合の整数を□□□□で表し、条件を満たす ← 整数の個数を考える。 (ウ)32104 より前に並んでいる順列 (整数) 1□□□□, 30 □□□などのように表して 個数を調べる。 解答 (ア) 万の位には0以外の数字が入るから 4通り そのおのおのに対して、他の位は残りの4個の数字を並べて 4!=24(通り) (イ) 小さい方から順番に 最高位の条件に注目 inf. (ウ) について 32104 より後ろに並ん よって, 5桁の整数は全部で 4×24=96 (個) 20 21 の形の整数は の形の整数は の形の整数は る順列 (整数)の個数 4!=24 (個) べてもよい。 3!=6 (個) [計 30個] 4!個 3!=6 (個) [計 36 個] 2!=2 (個) [計 38 個] (1) (2) (1) 考え (3)異な 230□□の形の整数は 40番目の数は,231□□の形の整数の最後で (ウ) 32104より小さい整数のうち,小さい方から順番に 10000, 2 30□□□,3 320□□の形の整数は の形の整数はともに □□の形の整数はともに 32104 は 3 20□□の形の整数の次であるから 2!個 4!×2+3!×2+2+1=63 (番目) 23140 34□□□の形の 3!個 324□□の形の 2!個 4個 321□□の形の 3!個 32104, 32140 32104 より 4!+3!+2/+1] の順列(整数) よって96 同じもの ピンポイ 円順列 回転して一致 じゅず原列 回転または裏込 みなす。 ずつあるから、じゅ 列の中には裏 ののじゅず順 数の半分である。

解決済み 回答数: 1
数学 高校生

(2)で固定する子供は4P1としなくていいのですか? (3)で波線のところがわからないです。 教えてください。

実力アップ問題 83 難易度 CHECK 1 CHECK 2 |大人4人, 子供4人がテーブルに着席するとき, 次の問いに答えよ。 CHECK 3 (1) 円形のテーブルに着席するとき,子供4人が並んで座る座り方は何 通りあるか。 (2) 円形のテーブルに着席するとき,子供4人が1人おきに座る座り方 は何通りあるか。 (3)正方形のテーブルの各辺に2人ずつ並んで着席するとき,座り方 は何通りあるか。 (関東学院大 * ) ヒント! (1),(2)の円順列では,特定の1人(または1組の集団)を固定して考 えるといいんだね。(3) は,円順列の応用問題だ。よく考えてみよう! (1) 右図に示すよう 【子供の並べ替え4! 通り に4人並んで座 る子供の集団を固 定して考えると, 固定 子 子 子供の並べ替え で4通り。 子 子 大 大 残りの大人の並 大 大 べ替えで, 大人の並べ替え 4! 通り 4!通り。 以上より,求める座り方の総数は, 4! × 4! = 24 × 24=576通り......(答) 子供の並べ替えで,3! 通り。 大人の並べ替えで, 4! 通り。 以上より,求める座り方の総数は, 3! x 4! = 6 × 24=144通り(答) (3) 一般に,8人が円形のテーブルに座 る座り方は,特定の1人のαを固定 して考える円順列より, (8-1)!=7!=5040通りとなる。 ここで、正方形のテーブルの各辺に2 人ずつ座る場合,下図のように固定す る特定の1人(a)の位置によって 21=2(通り)倍に増える。 固定 固定 固定 (2) 右図に示すよう 子 1人おきに座 る子供の内 特定 (+ (子) 子 の1人を固定して 考えると、残りの 子供と4人の大 人の席の位置が 決まるので, (+ 以上より、求める座り方の総数は, 2×5040=10080 通り

解決済み 回答数: 1
数学 高校生

(3)の問題です。解説をみたのですが、黄色の線を引いたところです! この4はどこから出できたのでしょうか?教えて欲しいです🙇‍♀️

重要 例題 33 同じものを含む円順列・じゅず順列 00000 ガラスでできた玉で, 赤色のものが6個, 黒色のものが2個, 透明なものが1 個ある。 玉には,中心を通って穴が開いているとする。 (1)これらを1列に並べる方法は何通りあるか。合 (2)これらを円形に並べる方法は何通りあるか。 (3) これらの玉に糸を通して首輪を作る方法は何通りあるか。 CHART & THINKING 基本18, 重要 22 (2)円形に並べるときは,1つのものを固定の考え方が有効。固定した玉以外の並び方を 考えるとき,どの玉を固定するのがよいだろうか? (3)「首輪を作る」とあるから,直ちに じゅず順列=円順列 2 でよいだろうか? すべて異なるもの なら、じゅず順列で解決するが,ここで は,同じものを含むからうまくいかない。 その理由を右の図をもとに考えてみよう。 答 000 左右対称 裏返すと同じ人 0 OL 9! 9.8.7 -=252 (通り) 同じものを含む順列。 6!2! 2.1 (1) 1列に並べる方法は (2)透明な玉1個を固定して、残り8個を並べると考えて 8! 8・7 -=28(通り) 6!2! 2.1 (3)(2)の28通りのうち,図 [1] のように 4通り [1] 左右対称になるものは よって,図[2]のように左右対称でない 円順列は 19文の [2] 赤玉6個、黒玉2個を1 列に並べる場合の数。 inf. (2) について, 解答編 p.213 にすべてのパターン の図を掲載した。 左右対称 でないものは、裏返すと一 致するものがペアで現れる ことを確認できるので参照 してほしい。 307 1章 3 組合せ 28-424 (通り) この24通りの1つ1つに対して, 裏 返すと一致するものが他に必ず1つ ずつあるから,首輪の作り方は 24 4+ =16(通り) 2 PRACTICE 330 する これらを1列に並べる方法は の下にひもを通し、

解決済み 回答数: 1