学年

教科

質問の種類

数学 高校生

二次方程式の質問です 解の一つである1と-1の時を考えるのはなぜですか?解説を読んでもよくわかりません

214 重要 例題 130 2次方程式の解と数の大小 (3) 00000 *Fix€x²+{2_a}x+4=2a=0&t=1 <x<10>}{}\ 解答 をもつような定数αの値の範囲を求めよ。 128, 1 指針 条件が 「-1<x<1の範囲に少なくとも1つの実数解をもつ」であることに注意。 大きく分けて次のA B の2つの場合がある。 A-1<x<1の範囲に,2つの解をもつ (重解は2つと考える) ® -1 <x<1の範囲に、ただ1つの解をもつ 方程式の2つの解をα, β (α≦β) として,それぞれの場合につ いて条件を満たすグラフをかくと図のようになる。 ®は以下の4つの場合がありうるので注意する。 ® [2] + a 1 B x または a -1<x<1 の範囲に1つ, <-1 または 1<x の範囲に1つ x= 2 である。 + 81 x ® [3] A [1] + 1<x<1 の範囲に2つ ® [4] a=―1 + + 1 x x=-1と1<x<1 の範囲に1つ -1 a B=1 x=1と1<x<1 の範囲に1つ 2-a x=- 2-1 204 a3 ①~④の共通範囲を求 21 解の1つが1<x (-a+3)(- または1<xにあるため ゆえに よって (a-3)(3a [3] 解の1つがx= (-1)=0から このとき、方程式は よって (x+1)(x ゆえに,解はx=- [4] 解の1つがx=1 f(1)=0 から このとき、方程式 よって (x-1) ゆえに、解はx=- 求めるαの値の範囲 2≦a< f(x)=x2+(2-a)x+4-2a とし, 2次方程式 f(x) =0 の 判別式をDとする。 y=f(x)のグラフは下に凸の放物線で,その軸は直線 a-2 [1]2つの解がともに-1<x<1の範囲にあるための条 件は,y=f(x) のグラフがx軸の1<x<1の部分と異 なる2点で交わる, または接することである。 すなわち,次の (i)~ (iv) が同時に成り立つことである。 (i) D≧ 0 (ii) 軸が-1<x<1の範囲にある (iii) f(-1)>0 (iv) f (1) > 0 (i) D=(2-α)-4・1・(4−2a) =a+4a-12=(a+6)(a-2) D≧0 から (a+6)(a-2)≥0 ゆえに am-6,2≦a ...... ① (x=472 について -1<> 2 <1 よって ゆえに -2<a-2<2 0<a<4 ...... ② (i) f(-1)=-a+3であるから よって a <3 条件は 「少なくとも1つ」 であるから,y=f(x 定数分離による解法 この問題は、方程式 もう)、2つのグラフが ONE Bx²+(2-a)x 方程式(*)が一 y=x^2+2x+4.. が1<x<1の と同じである 2点(2, ②が点(-1, ②がと グラフがx軸に接する 場合,すなわち, D= の場合も含まれる。 [1] -a+3>0 8-1 軸 ID=0 ついて D=0 図からa>0, la=2のとき よって、① は、グラフカ 130 つような定 方程式

解決済み 回答数: 1
数学 高校生

二次方程式の質問です チャートの解説とは違う組み合わせで解いたんですけど答えが合わないです この解き方がダメな理由を教えてください

212 1. 基本 例 129 2次方程式の解と数の大小 (2) 00000 | 2次方程式 ax-(a+1)x-a-3=0が,-1<x<0, 1 <x<2の範囲にそれぞれ 1つの実数解をもつように、定数αの値の範囲を定めよ。 指針 f(x) =ax²-(a+1)x-a-3 (α0) として p.207 基本事項2 重要 13 [a<0] [a>0] y=f(x) グラフをイメージすると, 問題の条件を満 たすには y=f(x) のグラフが右の図のよ うになればよい。 + 0 1 すなわち f(-1) f (0) 異符号 L 2x O [f(-1)(0)01 かつ f(1) f (2) が異符号 [f(1)f(2) <0] である。 αの連立不等式 を解く。 T TO 0 ly=f(x) 2次方程式 128 129のように、2枚 豚の存在明の問題 このの存在範囲の問題につい 方式の実数解を 方程式(x)=0がわくと gの範囲に共有 + CHART 解の存在範囲 f(b)f(g) <0ならとの間に解(交点) あり f(x)=ax²-(a+1)x-a-3とする。 ただし α≠0 f(-1)f(0) <0から 2次方程式であるから、 (x2 の係数) ≠0 に注意 注意 指針のグラフから かるように,a>0 の問題は、題 126, 一方程 方程式(x) の範囲に実 ●グラフが指定され 2次関数のグラフ [1] 判別式 D この3つの条件に 放物線y=f であるとき, 件となる。 題意を満たすための条件は,放物線y=f(x) が-1<x<0, 解答 1 <x<2の範囲でそれぞれx軸と1点で交わることである。 すなわち f(-1)(0) <0 かつ f(1)(2)<0 ここで f(-1)=a(-1)-(a+1) (−1)-a-3=a-2, が下に凸),a< 0 (グラ f(0)=-a-3, f(1)=α・12-(a+1) ・1-a-3=-a-4, が上に凸) いずれの場合 f(-1)f(0) <0かつ [1]判別 f(2)=α・22-(a+1)・2-a-3=a-5 (a-2)(-a-3)<0 ゆえに (a+3)(a-2)>0 よって a<-3, 2<a また,f(1)(2)< 0 から ...... ① ゆえに (-a-4)(a-5)<0 (a+4)(a-5)>0 よって a<-4,5<a ...... ① ② の共通範囲を求めて a<-4,5<a これは α=0を満たす。 f(1)f(2)<0 が、題意を満たす条件で る。 よって, α>0のとき α < 0 のとき などと場合 けをして進める必要はな を意味す ●グラ 上の p する [2] 軸の [3] [1] [2] -4-3 2 5

解決済み 回答数: 2
数学 高校生

数学Ⅰの方程式の問題です。左写真の(1)(ⅲ)の問題で、解答にはx²-2x=tと置かれていたのですが、自分は右写真のように文字で置かずに解きました。そのときに解答では、文字でおいた後にtの範囲を求めていたのですが、自分の解き方の場合ではx²-2xの範囲を求めないといけないで... 続きを読む

69 68 第3章 2次関数 40 2次方程式の解とその判別 (1) 次の方程式を解け. (i)x2+4x-20 (ii)^-52+4=0 (iii) (x²-2x-4)(x²-2x+3)+6=0 (2) 2次方程式 x-4x+k=0 の解を判別せよ。 精講 (1) 2次方程式を解く (=解を求める)方法は次の2つです。 ① 因数分解した式) = 0 ② 解の公式を使う ②を使えば,因数分解できなくても解を求められますが,因数分解できる 式では,必ず因数分解する習慣をつけましょう. (2) 2次方程式を解くと, その解は次の3つのどれかになります。 ① 異なる2つの実数解 ② 実数の重解 ③実数解はない この3つのどれになるかを判断することを2次方程式の解を判別するとい います。 このとき, 判別式といわれる式を利用します。 解答 (1) (1) 解の公式より, x=-2±√60) (ii) 4-5x2+4=0 は (x²-1)(x²-4)=0 :.x2=1,4 よって, x=±1, ±2 tap 30- (i) (x²-2x-4)(x²-2x+3)+6=0 において x²-2x=t とおくと x²-2x をひとまとめ t=(x-1)2-1 だから, t≧-1 37 ポイント (t-4)(t+3)+6=0 .. t-t-6=0 .. (t-3)(t+2)=0 t≧-1 だから, t=3 |かけて-6, たして 1 となる2数を考 よって, x2-2x=3 (x-3)(x+1)=0 .x=-1,3 えると32 001 W

解決済み 回答数: 1
数学 高校生

この問題の答え10人なのですが、本当に分かりません。助けてください。 2番の方です。 自分の答えは3√10になります。

ます。 で Des 138 ちらにも 69 1 数理技能 ある試験を行ったところ, Aグループの9人の平均点は4点, 「Bグループ6人の平均点は81点で, A グループとBグループ を合わせた平均点は72点でした。 次の問いに答えなさい。 □(1) Aグループの平均点をねで表しなさい。 この問題は答え 「ヘリールのも ( 表現技能 ) だけを書いて下さい。 解説 《平均》 解答 Aグループの合計点は, 9×@点, Bグループの合計点は, ×81点 また, A グループとBグループを合わせた合計点は, 72点ですから, 9+b) 2次 第2回 解説・解答 人とは 9a +816=72 (9+b) かけれる a +96= 8 (9+b) 両辺を9でわります。 a +9b = 72 + 86 右辺を展開します。 a = 72 + 86-96 a=-6+72] 答 a=-6+72 (2)別の試験を行ったところ, Aグループの平均点が81点, B グループの平均点がα点で,AグループとBグループを合わせ た平均点は71点になりました。 このとき, Bグループの人数は 何人ですか。 解説 《平均》 解答 000 Aグループの合計点は,981点, Bグループの合計点は、 ⑥×@点,また,AグループとBグループを合わせた合計点は, (9+b) ×71点ですから, 9 x 81 + ab = 71(9+6) 9 x 81 + ab = 71 × 9 +716 4 30

解決済み 回答数: 1