学年

教科

質問の種類

数学 高校生

175.3 訂正後の記述に問題はないですかね??

例題165同様、 け平行移動したもの フと対称 フと対称 フと対称 昇する。 軸との交点の (真数) = 1 とすると, x+3=1から x=-1 logeb logea logab=i oga MN=loga Me 軸との交点の x-8-1から log, (4x-8) 基本例題 175 対数の大小比較 次の各組の数の大小を不等号を用いて表せ。説明 (1) 1.5, log35 (2) 2, log49, log25 (3) logo.53, logo.52, log32, log52 p.273 基本事項 ② 指針 対数の大小比較では,次の対数関数の性質を利用する。 a>1のとき0<b<glogap<logag AUTO 大小一致 関係をいた 0<a<1のとき 0<p<glogp>logaq -------------- に関する箇所 ージで触 CHART 対数の大小 底をそろえて 真数を比較 大小反対 (不等号の向きが変わる ) まず異なる底はそろえることから始める。 (1) 小数 1.5 を分数に直し,底を3とする対数で表す。 (2) 210g49を底を2とする対数で表す。 (3) 4数を正の数と負の数に分けてから比較する。 ・........ 0 また, 10g32, 10g52の比較では, 真数がともに2であるから 底を2にそろえると考えやすい。 解答 0x T (1) 1.5 = 3 3 2 = -log33=log3 32 また (32)=3327>52 & 底3は1より大きく35であるから したがって ( 22210g2=10g222=10g24, 底2は1より大きく, 3 4 <5であるから log33ž>log35 1.5 >log: 5 すなわちょ<0.2 x 1218 同値では10g232 log49= ED ECC =10g23 log23<log24 <log25 すなわち 10g9 <2<log25 (3) 底0.5は1より小さく,3>2>1であるから H logo.53<logo.s2<0 (175 1 log23' すなわち したがって log22² 6-1 log32= log52= 1 <3 <5であるから 0<log23<log25 moke (Fall-colto 13___1 よって 0< log25 で,底2は1より大きく log25 log2 3 2175 (1) log23, log25 はな よいお願 0<log52<log32 logo.53 <logo.52 <logs 2 <logs2 10gag log.pt 0 ye 次の各組の数の大小を不等号を用いて表せ。 10144 p y=logaxのグラフ a>1 q x y 0<a<1 logap OP loga q 底はそろえよ 1 9 <A > 0, B>0ならば A>B⇔A'>B' 底の変換公式。 のように 不等号の向きが変わる。 指針のy=10gaxのグラフ から, 0<a<1のとき α>1 のとき 0<x<110gax<0 x>1⇔10gax>0 0<x<1⇔loga x>0 x>1⇔logax < 0 Op.293 EX113, (2) logo.33, logo.35 (3) logo.54, log24, log34 275 5章 31 対数関数

回答募集中 回答数: 0
数学 高校生

175.2 訂正後の記述に問題はないですかね??

基本例題 175 対数の大小比較 次の各組の数の大小を不等号を用いて表せ。 (1) 1.5, log3561 (2) 2, log49, log25 指針 対数の大小比較では,次の対数関数の性質を利用する。 a>1のとき 0<p<g⇔logp<logag 対 大小一致 0<a<1のとき 0<p<glogp>log.g -- 解答 せ。説明 大小反対 (不等号の向きが変わる) まず異なる底はそろえることから始める。 (1) 小数 1.5 を分数に直し、底を3とする対数で表す。 (2 を底を2とする対数で表す。 2と1049 (3) (3) logo.53, logo.52, log32, log52 p.273 基本事項 ② 件に関する箇所を比べてた。 HUTE 【CHART 対数の大小 底をそろえて 真数を比較 (3) 4数を正の数と負の数に分けてから比較する。 また, 10g2, 10gs2の比較では, 真数がともに2であるから, 底を2にそろえると考えやすい。 (2) 2210g2=10g222=10g24, 底2は1より大きく, 3 4 <5であるから (1) 1.5=2=log:3=log, 3} # (3³)²=3¹=27>5² また 底3は1より大きく35であるからな 10g33 >10g35) したがって 2 1.5 >log35 同値では10g23210g23 log4 9=- log22² ......... 1 logs2= log52= log23' 10g25 1 <3 < 5 であるから 0<log23 <log25 recept Soffol よって 0< すなわち したがって log25 log2 3 10gage 1 log.pt log23 <log24<log25 すなわち 10g9<2<log25 0.5は1より小さく, 3>2>1であるから logo.53<logo.52<0ft で,底2は1より大きく, 式しか定 次の各組の数の大小を不等号を用いて表せ。 (?) 19go.33,10go.35 YA a>1 0/p 00000 - ***** 0<log52<log32 logo.53 <logo.52<logs2<logs2で成り立つ log, y=logaxのグラフ gx y 0<a<1 log.p op. logag 1 g 底はそろえよ <A> 0, B>0ならば A>B⇒A¹>B² 底の変換公式。 a142ターのように アート 不等号の向きが変わる。 指針のy=10gaxのグラフ から, α>1のとき 0<x<1⇔10gax<0 x>1⇔10gax>0 Job 0 <a <1のとき 0<x<1⇔10gax > 0 x>1⇔10gax < 0 x Op.293 EX113 (3) logo.54, log24, log34 275 5章 31 対数関数

回答募集中 回答数: 0
数学 高校生

接戦の方程式ってなぜこのようになるんですか?💦

O 基本例題 248 放物線と | 放物線C:y=x2-4x+3上の点P(0, 3), Q (6, 15) における接線をそれぞれ 基本246,247 |ℓ, m とする。 この2つの接線と放物線で囲まれた図形の面積Sを求めよ。 指針 まず, 2接線l m の方程式と, l, m の交点のx座標を求め, グラフをかく。 この交点のx座標を境に接線の方程式が変わるから, 被積分関数も変わる ・被積分関数は, (x-α)” の形で表される。 よって, 定積分の計算では, S(x-a)'dx=(x-a)² -+C (C は積分定数) を利用すると,かなりらくになる。 3 y=x2-4x+3 から y'=2x-4 解答の方程式は,y-3=(2・0-4)(x-0)からy=-4x+3 m の方程式は, y-15=(2・6-4)(x-6) から y=8x-33 lとmの交点のx座標は, -4x+3=8x-33 を解くと 12x-36=0 PAA ゆえに x=3 よって, 求める面積Sは S={(x-4x+3)-(-4x+3)}dx +{(x-4x+3)-(8x-33)}dx = S²x²dx+S₁ (x-6)²³dx - [ ²³1 + [(x = 60² 1 3 =9+9=18 uhl (x = S 530 -S{(2x+3)(x-4x+3)}dx 24+S(x2-6x)dx 9 4 =54+ x(x-6)dx -54-11 (60)=54-36-18 P |15 13 のが 3 m 14800 n^e 参考lとmの交点をRとし, 2点P, Q を通る直線をnとす る。また、Cとnで囲まれた部分の面積をSとすると,求 める面積Sは S=APQR-S₁ R(3, -9), n:y=2x+3であるから 1 S= ((15-3)+(3-(-9)}]* *1 22 6 x 23(²x-(x8-0017+x5 【曲線 y=f(x) 上の点 (a, f(a)) における接 線の方程式は y-f(a)=f'(a)(x-a) 曲線と接線の上下関係 0≦x≦3では x2-4x+3≧-4x+3 3≦x≦6では x2-4x+3≧8x-33 f(x-a) dr [ (x=a)² + C 3 C- YA |15 3 S₁ 0 -T 169-2 (*) APQR =APQT+APRT 底辺PTは共通。 177 2つの (2) 指針 解答

回答募集中 回答数: 0