学年

教科

質問の種類

数学 高校生

85. ①記述問題で「〜でも一般性を失わない」という記述を見たことがないのですが、記述においてよく書くものですか?? ② 4,5行目の「x軸に、...y軸にとり」は「x軸上に、...y軸上にとり」と同じことですよね?? ③ ②のところで直線BCと辺BCとなっているのはなぜで... 続きを読む

●合は起こりえない こともできる。 が平行 ない。 3の場合は、 ①,2の場合 3 3 直線が1点で 直線の交点を 通る x+b₁y+c=l -+C2=0が平 -ab=0 (ii) ←2xy+1= txty-7=/ ような 基本 例題 85 座標を利用した証明 (2) △ABC の各辺の垂直二等分線は1点で交わることを証明せよ。 1 指針 p. 117 基本例題72と同じように、計算がらくになる工夫をする。 座標の工夫 ①1 座標に0を多く含む 2② 対称に点をとる この例題では,各辺の垂直二等分線の方程式を利用するから、各辺の中点の座標に分数が 現れないように, A(2a,26), B(-2c, 0), C(2c, 0) と設定する。 なお,本間は三角形の外心の存在の座標を利用した証明にあたる。 解答 ∠Aを最大角としても一般性を失わな い。 このとき, ∠B <90° ∠ C <90° である。 SMO SAO MA 直線BC をx軸に、辺BCの垂直二等 分線を軸にとり, △ABCの頂点の 座標を次のようにおく。 A(2a, 2b), B(-2c, 0), C(2c, 0) b B -2c a²+6²-c² b N A(2a, 2b) K OL ただし a≧0,6> 0,c>0 また, ∠B<90°C <90° から, a≠c, aキーcである。 更に、辺BC, CA, ABの中点をそれぞれL, M, N とする と, 0), M (a+c, b), N (a-c, b) と表される。 L(0, 辺ABの垂直二等分線の傾きをm とすると, 直線AB の傾き b 06 であるから,mo a+c は a+c=1&y a+c b よって, 辺ABの垂直二等分線の方程式は y-b=-atc -(x-a+c) m=- M C 2cx すなわち y=- -x+ a+c b 辺ACの垂直二等分線の方程式は,①でcの代わりに -c と おいて a-c a²+6²-c² y=-- -x+ b b 2直線①,②の交点をKとすると, ① ② のy切片はともに a²+6²-c² a²+6²-c² であるから Kl0, +80-C²) b b 点K は, y 軸すなわち辺BCの垂直二等分線上にあるから, △ABCの各辺の垂直二等分線は1点で交わる。 基本72 注意 間違った座標設定 例えば, A(0, b), B(c, 0), C (-c, 0) では, △ABCは 二等辺三角形で、特別な三角 形しか表さない。 座標を設定するときは, 一般 性を失わないようにしなけ ればならない。 証明に直線の方程式を使用 するから 分母=0 となら ないように,この条件を記 している。 0-26 -2c-2a b atc 点N(a-c, b) を通り,傾 き−atc b の直線。 辺ACの垂直二等分線は, b a-c 傾き の直線ACに 垂直で,点 M (a+c, b) を 通るから、①でcの代わ りに -c とおくと, その方 程式が得られる。 練習 △ABCの3つの頂点から,それぞれの対辺またはその延長に下ろした垂線は1 ②85点で交わることを証明せよ (この3つの垂線が交わる点を三角形の垂心 とい (p.134 EX58 » う)。 133 3章 13 直線の方程式、2直線の関係

未解決 回答数: 1
数学 高校生

81.2 三角形ABCを2等分するときに辺AC上の点を通れば良いと思うのは、解答のように三角形をグラフ上に示したときに思う(つまり図を書け)ということですか?

に関係な重要 例題 81 の交点を通針(1) 5 TA k=- 直線と面積の等分 (I) 基本15 3点A(6,13),B1, 2) C(9,10) を頂点とする △ABC について (1) 点Aを通り, △ABCの面積を2等分する直線の方程式を求めよ。 (2) BC を 1:3 に内分する点Pを通り, △ABC の面積を2等分する直線の 辺 基本 73,76 方程式を求めよ。 照)。 kA: ての恒等 座標は B=0 です 2 三角形の面積比 等高なら底辺の比であるから、求める直線は, 辺BC を同 じ比に分ける点, すなわち辺BCの中点を通る。 (2) 求める直線は, 点Pが辺BCの中点より左にあるから, 辺 ACと交わる。 この交点をQとすると, 等角→挟む辺の積の比(数学A:図形の性質) により 練習 ③81 解答 1) 求める直線は、辺BCの中点を通 る。 この中点をMとすると, その △ABC CB・CA 21 これから、点Qの位置がわかる。 ACPQ CP:CQ1 B/ y-13= すなわち (5, 6) よって, 求める直線の方程式は -(x-6) (1+9, 2+10) 2 y-4= 6-13 5-6 DOBAR A(6, 13) 3.1+1.9 3・2+1.10 1+3 1+3 P B(1,2) y=7x-29@one したがって (2) 点Pの座標は すなわち (34) 辺AC上に点 Q をとると、直線PQ が△ABCの面積を2等 分するための条件は ゆえに CQ:CA=2:3 ACPQ 3CQ CP·CQ △ABC CB・CA 4CA 2007 よって, 点Qは辺 CA を 2:1に内分するから, その座標は 1.9+2.6 9 2+1 1.10+2.13 V 2+1 すなわち (7,12) したがって, 2点P, Q を通る直線の方程式を求めると 12-4 (x-3) すなわちy=2x-2 7-3 9 Q C(9, 10) MOCAS x 2 B P d's M A ŠEŠIAS (1) △ABMと△ACMの高さ は等しい。 △ABC= Q 異なる2点 (x1, y1), (x2, y2) を通る直線の方程 式は AD 2-(x-x) X2-X1 -1/12CA CBsin C, ACPQ= CP.CQ sin C CP-CQ CB・CA ACPQ から △ABC また BC: PC=4:3 3点A(20,24),B(-4,-3), C(10,4)を頂点とする △ABC について、辺BC 2:5に内分する点Pを通り, △ABCの面積を2等分する直線の方程式を求め よ。 Cp.134 EX56 129 3章 3 直線の方程式、2直線の関係 13

未解決 回答数: 1