学年

教科

質問の種類

数学 高校生

誰か分かる方(2)について詳しく解説お願いします 🙇 写真下に解説がありますが、それを読んでもよくわかりません💦

104 第2章 2次関数 例題 44 最小値の最大・最小 **** x の関数 f(x)=x2+3x+mのm≦x≦m+2 における最小値をgと おく. 次の問いに答えよ. ただし, m は実数の定数とする. (2) (1)最小値g をmを用いて表せ.dotup. (岐阜大・改) (2)の値がすべての実数を変化するとき, gの最小値を求めよ. 考え方 (1) 例題 43 と同様に考える.軸が定義域に含まれるかどうかで場合分けする。 (2) (1)より,mの値を1つ決めると,g の値がただ1つ決まる. よって,(1)で求めた mの関数とみなし、グラフをかいて考える (1)/(x)=x'+x+m=(x+2)+m-2 小豆 解答 グラフは下に凸で, 軸は直線 x=- 2 $301> 3 (i) m+2<-- 3のとき 2 e+ 小 場合分けのポイント 3は例題 43 (1) と同様 つまり,<-1のとき 20001 目はグラフは右の図のようになる。最小最大 したがって, 最小値 g=m²+8m+10(x=m+2) mm+2 3 3 (ii) m≤- ≦m+2のとき x= 2 2 7 つまり、12sms/2/2のとき 3 が区内 軸が区より左側 +2 0. グラフは右の図のようになる. したがって, 最小値 最小 432 m m+2 Stalton 9 (s=x) ex g=m-4 x=- 2 x=- 32 から、 (8=x) 8 (- 3 (iii) m>- のとき 2 グラフは右の図のようになる。 したがって, 最小値 g=m²+4m (x=m) (2)(1)より,gをmの関数とす ると,グラフは右の図のよう になる. 72- 32 のとき、 -4 TT よって, gの最小値は, " (i) -6(m=-4 のとき) | 最小 mm+2 Sp>I (vi) 94 (iii) m軸,g軸となる。 とに注意する. (m) 大量 15 64 最小 (ii) 23

回答募集中 回答数: 0
数学 高校生

ルーズリーフのやり方でやったんですけど、そっからどうすればわからなくて、解答と何が違うのかも含めて答えてくれると嬉しいです!

26 漸化式と極限(3) ・・・ 分数形 ... 数列{an} が α1=3, An+1= 3an-4 an-1 によって定められるとき [類 東京女子大] (1) bn = 1 An-2 とおくとき, bn+1, bn の関係式を求めよ。 (2) 数列{an} の一般項を求めよ。 (3) liman を求めよ。 n→∞ p.36 まとめ, 基本 26 指針 針 (1) おき換えの式bm= 1 an-2 ①の an-2に注目。 漸化式から bn+1 (= 1 an+1-2 の形を作り出すために, 漸化式の両辺から2を引いてみる。 なお,①のおき換えが与えられているから, an≠2としてよい。 (2) まず (1) の結果から一般項bnをnで表す。 (1) 漸化式から an+1-2= 3an-4 解答 -2 an-1 検討 ゆえに an-2 an+1-2= an-1 両辺の逆数をとって 1 an-1 An+1-2 An-2 an+1= SE 分数形の漸化式について 一般項を求める方法は, p.36 の ⑥参照。 rants panta そのとき,特 1 1 よって = +1 an+1-2 an-2 性方程式 x= rxts の解 px+q したがって bn+1=6n+1 がx=α (重解)ならば, (2) (1)より, 数列 {bn} は初項b1=1, 公差1の等差数列で bm= あるから b=1+(n-1)・1=n 1 (または an-a bn=an-a) とおくと, よってie an- (3) liman=lim n→∞ n- 1 1 +2=-+2 = 1 bn +2=2 -2)= n $8 般項 αn が求められる。 CTUL 1 |bn= an-2 から -milan- -2= 1 bn

回答募集中 回答数: 0
数学 高校生

(3)と(4)がわからないです!お願いしますm(_ _)m

基礎向 96 倍数の規則 ①から⑥までの数字が1つずつかかれた6枚のカードがある。 これから3枚を選んで並べることにより、3桁の整数をつくる このとき,次のような整数はいくつあるか. (1)2の倍数 3の倍数 4の倍数 6 の倍数 ある整数がどんな数の倍数になっているかを調べる方法は,以下の 精講 ようになります. これを知らないと問題が解けません。 ・2の倍数:一の位の数字が偶数 ・3の倍数 各位の数字の和が3の倍数 ・4の倍数: 下2桁の数が4の倍数 ・5の倍数:一の位の数字が 0 または5 ・6の倍数:一の位の数字が偶数で,各位の数字の和が3の倍数 X Zak ・8の倍数:下3桁の数が8の倍数 9の倍数:各位の数字の和が9の倍数 10の倍数:一の位の数字が 0 30 (2)から6までの数字から3つを選んだとき,その和が3の倍数にな る組合せは, (1, 2, 3), (1, 2, 6), (1, 3, 5), (1, 5, 6), (2, 3, 4), (2, 4, 6), (3,4,5),(4,5,6)の8通り. そのおのおのに対して並べ方が3! 通りずつ. .. 8×3!=48 (個) 右になるほど大きく なるように拾ってい く(規則性をもって) (3)から⑥までの数字から2つを選んで2桁の整数をつくるとき, これが4の倍数になるのは, 12,16,24,32,36,52,5664の8通り。 6-2 そのおのおのに対して,その左端におくことができる数は4通りずつ。 .. 8×4=32 (個) (4)(2)の8通りのおのおのについて,一の位が偶数になるように並べる 方法を考えればよい. (1,2,3)(1,5,6,3,4,5) は偶数が1つしかないので、そ れぞれ2個ずつ. (1,2,6,2,3,4,4,5,6) は偶数が2つあるので,それぞ れ, 2×2×1=4(個) ずつ. (2, 4, 6) はすべて偶数なので, 3!=6(個). よって, 2×3+4×3+6=24 (個) (1)一の位が2, 4, ⑥のどれかになるので,まず,一の位から考えます . ポイント 整数が2の倍数, 3の倍数, 4の倍数, 5の倍数, (条件のついた場所を優先) (2)3の倍数になるような3つの数の組が1つ決まると並べ方は3!通りあり ます. (3) 2桁の数で4の倍数であるものを1つ決めて、その左端にもう1つ数字を おくと考えます. 6の倍数,8の倍数, 9の倍数, 10の倍数 になる条件は覚えておく 解答 (1) 一の位の数字の選び方は2, 4, 6の3通りで,このおのおのに対 して百の位、十の位の数字の選び方は sP2=5×4=20 (通り) 演習問題 96 6個の数 0 1 2 3 4 5 の中から4個の異なる数字を選び, そ れらを並べて4桁の整数をつくるとき,25の倍数は何個できるか、

回答募集中 回答数: 0