学年

教科

質問の種類

数学 高校生

73 コがわかりません。問題文のa.b.c.0の0はf(0)の時なのか、単に普通の0の時なのか教えていただきたいです🙇‍♀️また、コの求め方が解説を読んでもわからなかったので教えて欲しいです🙇‍♀️ どなたかすみませんがよろしくお願いします🙇‍♀️

73 Clax+bcx+axtacx+ahx+abc=x3-(a+b+c)x+cal+Ac+ca)x-h 難易度 ★★★ 目標解答時間 12 分 SELECT 90 a,b,cはa<b<c を満たす実数とし、3次関数f(x)=(x-a)(x-b)(x-c) がある。 また,p=a+b+c, q=ab+bc+ca, r=abc とおく。 (xa)(xb) (xc)を展開することにより、f(x)をg, rを用いて表すと SELECT 60 f(x)=x となる。 + アx 10qx ウr f(x)=6x²-2x+ D= (-20)²-4.6.& = 4p² - 248 ウ | の解答群(同じものを繰り返し選んでもよい。) f(x)=3x²+2pxc+90=(2P)2-413.2=4P2-129=4(P2-38) y=f(x)のグラフとx軸が異なる3点で交わるので, f(x) 極値をもつ。 2次方程式f'(x) = 0 の判別式をDとすると, D= f(x) が極値をもつようなgの値の範囲は, g 4ペー才6)より,カ=0のとき 0 10 である。 -248 ]の解答群 P=0のとき-128>&<o < ≤ (2) === ③ M > f(x)は極値をもつので、2次方程式(x)=0は、異なる2つの実数解をもつ!! 以下, gヵ< 0 とする。 (1)p>0,r> 0 の場合を考える。 て 2次方程式 f'(x)=0の二つの実数解をα, β (α <β) とすると, α+β, αβ の正負に一 解と係数 である。 キ 1の解答群 textbf(x)=3x2+2px+a+b=,c= 3 P>0.長くだから、X+20.o ⑩ α+B>0,aB0 ① a+B>0,α < 0 ② α+β < 0, aβ > 0 ③ α+β < 0, aβ < 0 また, α, β, 0の大小関係について ク が成り立つ。 BCDより、卵のが負になるとしい はどちらかとなり、もう片方が負 がくるより、びの声が小さいため、 ク の解答群 ⑩ a <B<0 ①a<0</ ② 0<a<B さらに,f(0) ケ 10 であることから, a, b, c, 0 の大小関係は ケ ]の解答群 f(0)-rrioより、よって、f(0) <0 正 < ① ② コ の解答群 ⑩ 0<a<b<c ② a<b>0<e ① a<0<b<c ③ a<b<c<0 114 コ である。

解決済み 回答数: 1
数学 高校生

オカキなのですが、合同でない△ABCが2つ存在しの所の意味がわかりません。 どなたかすみませんがよろしくお願いします🙇‍♀️

1 TEAB=4AB-12:0、AB'+4AB44:0 19 難易度 ★★ 1+4 4 目標解答時間 9分 90 SELECT SELECT 60 (1)△ABCにおいて,∠A=60°, AC = 4 とする。辺BCの長さに対する△ABC の形状や性質 次の(i)(ii)の場合について考えよう。 (i) BC=2√3 のとき, AB=| アムであり、△ABCはイである。 (ii) BC4のとき, AB=ウであり,△ABCは エである。 A 60° 4 イ エ ] の解答群(同じものを繰り返し選んでもよい。) B C ⑩ 正三角形 ①直角三角形 ②鈍角三角形 (iii) BC= オ のとき, 合同でない△ABCが二つ存在し, それぞれ △ABC, △ABC とす sin∠ABC= cos AB₁C= キ である。 オ については,最も適当なものを、次の①~③のうちから一つ選べ。 √7 /11 ② 15 √19 カ キ の解答群(同じものを繰り返し選んでもよい。) sin∠ABC ① -sin∠AB2C COS ∠ABC (3) - cos AB₂ C (2)△ABCにおいて, ∠A=40°, BC = 7, AC=x とする。 △ABC が存在するようにしながら、xの値を増加させると, sin B の値は ク これにより、xの値のうちで最大のものは ケ である。 また, 合同でない △ABC が二 在するxのとり得る値の範囲は, コ <x< である。 ク の解答群 増加する 変化しない ① 減少する ②増加することも減少することもある ケ コ ラ サ の解答群 (同じものを繰り返し選んでもよい。 ) 7 sin 40° ① 7sin 40° 14 sin 40° sin 40° 7 14 7 14 sin 40° sin 40° 16+AB2-2/4.AB・(土)=16 AB2+4AB=0 AB(AB+4)=0 (配点 (公式・解法集 21 22

解決済み 回答数: 2
数学 高校生

矢印を引いているところの変形がわかりません。 どなたかすみませんがよろしくお願いします🙇‍♀️

94 難易度 ★★ SELECT SELECT 目標解答時間 15分 90 60 以下の問題を解答するにあたっては,必要に応じて巻末の正規分布表を用いてもよい。 次のような科学者 A 博士のメモが見つかった。 19 ア の解答群 89 このメモでは、小数第2位の数字が3であるかはっきりしない。 仮説検定をすることで,この確率の値について考えてみよう。 (1) 実際に粒子 Rを100個取り出したところ 31個が性質Pをもっていたとする。性質Pをもつ確 率は0.33 より小さいと判断してよいかを, 片側検定を用いて, 有意水準 5% で検定する。帰無 仮説は = 0.33 であり, 対立仮説はか ア 0.33 である。 粒子Rが性質Pをもつ確率は0.3である 256 -0.33 0.67 ×0.332 201 201 0.221 X 10 R 0.83 P 0.33 ② ≠ 20,1080 0.2389 0.88 33 14 帰無仮説が正しいとする。 粒子Rを1個取り出すとき、性質をもつならば1もたないなら ば0 の値をとる確率変数を Xとする。 X,の期待値をE(X), 分散をV(X), 標準偏差を とする。 E(X) は 0. イウであり, V(X) は 0.エオである。P(1-P)=0.33×0.67=0.24 0.33 粒子 R を 100個取り出したときに性質をもつものの個数は,二項分布カに従う! 4/0.0200 カ 1の解答群 0.4. 788 (20 ⑩ B(100,0.33) ① B(100,0.31) B(10, 0.33) B (10, 0.31) 31-0.33 とみなすと, Z= は近似的に標準正規分布に従う。 粒子を100個取り出したときに性質Pをもつものの割合をYとする。 個数 100が十分大きい YA #2 070147 ク ク ]】の解答群(同じものを繰り返し選んでもよい。 (n) (0 032 0.31 ① 0.32 0.33 0 ④ 1 (5) 10 100 320 0 of 0.47 と近似すると,P(Y≦0.31)の値は ケ であり、実際に100個取り出して31個が性 02 質をもっていたとしても、帰無仮説は棄却されず、確率は0.33 より小さいと判断できない。 ケ については,最も適当なものを、次の①~④のうちから一つ選べ。 547 0.11 ① 0.27 0.33 0.47 ④ 0.66 142 (2) 粒子R を取り出す個数をnとする。 0.31n 個が性質Pをもっていたとする。 n を十分大きいとみ なしの100をnに変えて検定するとき,帰無仮説が棄却されるようなぇの値として適するものは 0142) 200, 500, 1000, 2000, 5000, 10000 のうちに全部で コ 個ある。 0.50 10,08 143 (配点 10) (公式・解法集 107 108 110

解決済み 回答数: 1
数学 高校生

Step1から6の作図の方法がわかりません。特にStep2の円の書き方がわかりません。 自分で書いてみたのですが、Step2をまでを書いたのが写真の下のほうにあるのですが、答えにそのような図がなく、どのように書いたら良いのかがわかりません。

数学A (全問 答) 一つに 第1問 (配点 20) くされたマークして 半径が異なる2円の共通接線の本数は、2月の位置関係により、次のようになる。 ・共通接線の本数 (i) 互いに外部にある () 外接している (2点で交わる 半径が異なる2円の共通接線を作図したい。以下において、点C」を中心とする半径 の円を C1. 点C2 を中心とする半径1の円をC2とずる。 ただし、 とする。 (1) 2円が共通接線の本数の (i) の位置関係にあるとき、手順の (Step 1 ) ~ (Step 6) の順で共通内接線を作図する。 ・手順 A (Step1) 線分 2 を直径とする円をかく。 (Step 2) C を中心とする半径の円をかく。 (Step 3 ) (Step 1) の円と (Step 2)の円との二つの交点のうち、一方を Pとする。 (Step4) 線分 PC と円Cとの交点をQとする。 とし (Step 5) CO 点C2を通り、直線 PC に平行な直線と円Cとの二つの交点の うち,直線 PC に対して,点Cと同じ側にある点をRとする。 4本 3本 に答えてはいけませ の一つ下の桁を (Step 6) 直線 QR が求める共通内接線の1本である。 2本 (iv) 内接している (v) 一方が他方の内部にある O きは、250として許さない 小となる もう1本の共通内接線は, (Step 3) の二つの交点のもう一方をPとして 同じ手順で作図できる。 また. (Step 1)~ (Step 6) の順で作図した直線 QR が求 める共通内接線であることは,次のページの構想に基づいて説明できる。 (数学A 第1問は次ページに続く。) 1本 えるところを、2階のように 0本 共通接線に対して,2円が異なる側にあるようなものを共通内接線,2円が同じ側に あるようなものを共通外接線ということにする。 例えば,2円が () の位置関係にある とき,共通内接線の本数は1本, 共通外接線の本数は2本である。 Ci ro C2 (数学A第1問は次ページに続く。)

解決済み 回答数: 1