学年

教科

質問の種類

数学 高校生

(3)(ii)で、黄色マーカーのところで、 ・3s^2-2s-3はどこからきたのか ・9s^2+14s+1で割るとわかるのはなぜか がわかりません。教えてください。

【5】 a b を実数とする。xについての関数f(x)。g(x)を次のように定める. f(x)=xx-x+α.g(x)=-x+bx+4 x=f(x)は極小値を, g(x)は極大値をもち,これらの値は一致する. 次の問いに 答えよ. (1) tの値を求めよ. (2) a. bの値を求めよ. (3) 関数h(x) を次のように定める。 「f(x) (x<t のとき) h(x)= g(x)(xtのとき) (i) h(x) の最大値を求めよ. () 曲線y=h(x) をCとし, Cと異なる2点で接する直線を1とする.Cと1の2 である. (3)i) (1)のf(x)の増減表より, h(x)はxで増加し、 x < 1 で減 少する. また, 曲線y=g(x)は軸が直線x=1で上に凸の放物線であるか ら.h(x)はx≧1で減少する. よって、 (x)の増減は下表のようになる. ... 1 h(x) 15 増減表よりh(x)はx=132 のとき最大値 つの接点のx座標を求めよ. (40点) 考え方 (1) f'(x) を計算し、f(x)の増減を調べましょう. (2)(1)をもとに,f(x)の極小値を求めましょう。また,g(x)は2次関数ですから,平方完成をしてg(x)の極大値を 求めましょう。g(x) の極大値は微分法を用いて求めることもできます. (3)i) (1) (2) をもとにh(x) の増減を調べましょう. (曲線y=f(x)(x<t) 上の点 (s, f(s)) における接線が曲線y=g(x) (x≧t)に接する条件を考えましょう。曲線 y=f(x) (x<t) 上の点 (s, f(s)) における接線が,y=g(x)(x≧t)上の点(u, g(u)) における接線と一致すること を利用する方法もあります。 解答】 f(x)=xx-x+α より f'(x) = 3x²-2x-1=(3x+1)(x-1) なるので, f(x) の増減は下表のようになる. 1 x .... .... 1 ... f'(x) + 0 0 + f(x) 7 って, f(x) はx=1で極小値をもつので る. t=1 より, f(x) の極小値は f(1)=1'-1'-1+a=a-1 3. また (x)=(x-2/28)2 +12+4 (答) (1/3)=(-1)-(1)-(3)-(-1)+6 -1-3+9+162-167 をとる. ( Cは下図のようになる。 y=f(x) (8, f(s)) y = g(x) u (uif(w) ...... (答) 三択問題 6.2のとき。 a-1と +4の値はともに5である. 4 xにつ +2 (x) N for = f(s)=35-28-1 この接線は(vif(a))も通る。 y=(3s2-2s-1)(x-s) + s-s-s+ 6 図より Cとはx=s, u(s<1<u) で接するとしてよい.s<1より, I の方程式は y=f(s)(x-s)+f(s) (8,ρ(よ))における接線の方程式 より(8,t(s)の傾き Cのx <1の部分はy=f(x) で 表されるので,y=f(x)のグラ フの接線を求めている すなわち y=(3s2-2s-1)x - 2s + s' + 6 である. よって, C と1がx=u (u> 1) で接する条件は,x>1のとき h(x)=g(x) であることに注意すると (3s2-2s-1)x-2s' + s' + 6 = x + 2x + 4 g(x) x2+ (3s2-2s-3)x - 2s' + s + 2 = 0 が重解をもつことである. このとき ← ・接線と(2)の接点は いてある。 ………….. ① g()と(352-25-32-4(-2s'+s°+2)=0←①の判別式をDとするとD-O「①が重解をもつ①の判 「別式が0である」ことと、 ① が 重解をもつとき、その解は 3s22s-3 u = - 2 すなわち 金額をもつときax+bx+c=0の2解をdBdXB (35-25-3) = b 2-1 x+B= a+d=- であることを用いた、 (x)はx= 11/10で極大値+4をもつよって 曲線y=g(x) は上に凸の放物線 であるから, g(x) は頂点におい 極大となる. すなわち 解説 1° (別解) =1 b2 +4=a-1 4 a=6,b=2 -②数 17- ......(答) 201= ②数 18-

未解決 回答数: 0
数学 高校生

マーカー部分が何故なのか分かりません。 対称性に注目してなぜ、Pが第一象限にあるとわかるんですか?

35 150 基本 88 曲の接線の長さに関する証明問題 00000 曲線x+2y=(a>0)上の点Pにおける接線がx軸, y軸と交わる点を それぞれA,Bとするとき, 線分ABの長さはPの位置に関係なく一定である ことを示せ。 ただし, Pは座標軸上にないものとする。 (類岐阜 指針 まず 曲線の対称性に注目 すると (p.178 参照), 点P は第1象限にあるつまり P.1(2010)としてよりは基本83 (1) C同様にして点 における 接線の方程式を求め,点A,Bの座標を求める。様の長さがPの位置に関係 <一定であることを示すには,AB' が定数 (8,1に無関係な式)で表されることを祈 √√x²+√√y²=√√a² (a>0) ・・・... ① とする。 解答 ① は x を -x に, y を -y におき換えても成り立つから, 曲線①はx軸, y 軸, 原点に関して対称である。 どこから 58739 よって、点Pは第1象限の点としてよいから, P(s, t) (s>0, t>0) とする。 また,s = p,t=g(p>0,g>0) とおく。 ...... (*) y B P a 0 a A (xacosif ー x>0,y>0のとき,①の両辺をxについて微分すると 2 + 2y' 33√x 3√y -=0 ゆえに よって、点Pにおける接線の方程式は Ly=asing (*) 累乗根の形では表記 が紛れやすくなるので 文字をおき換えるとよい。 y-t=- (x- ゆえに y=- = ——— ( x − p³) +q³ .. @Ty=0¿¢b¿_x=p³+pq² :. A(p(p²+q²), 0) <s=p, t=q3 40=-(x-p³)+q³ 両辺にを掛けて 0=-gx+qp3+pq^ ゆえに x=p+pq^ x=0 とするとy=pq+g° ∴ B(0,g('+q2)) よって AB²={p(p²+q²)}²+{q(p²+q²)}² =(p²+q²)(p²+q²)²=(p²+q²)³ =(2s2+2/+2)=(ya²)=α² したがって, 線分ABの長さはαであり,一定である。 <a>0 曲線x2+y^2=(a>0) ① は媒介変数 0 を用いて る。この曲線を アステロイドという。アステロイドはx軸, y 軸, 原点に関して対称である。 なお, アステロイドは, サイクロイド (p.137の検討) に関連した曲線である。 その他のサイクロ イドに関する曲線について, p.638 で扱っている。 x=acos'0 y=asin'0 ②と表され 練習曲線√x+y=√a (a>0) 上の点P (座標軸上にはない)における接線が,x軸 ③ 88 y 軸と交わる点をそれぞれA, B とするとき, 原点0からの距離の和 OA+OBは 一定であることを示せ。 p.153 EX85

解決済み 回答数: 1