学年

教科

質問の種類

数学 高校生

解説の右上のOCベクトルとpベクトルの内積でなんで-√3k/2となるんですか?OCベクトルはどこの部分か分からないので教えて欲しいです!! あと(3)でなんでOCベクトルの部分が-1されてるんですか?

246 第8章 ベクトル 基礎問 159 ベクトルと図形 平面上に1辺の長さがんの正方形 OABC = がある.この平面上に ∠AOP=" ∠COP=- 57, OP=1となる点P をとり, 6' 線分AP の中点をMとする. kで割った(でないから) k0 だから, 2ks+t=0 1161 ......① 次に,OC・=|OC||||cos_57 6 2 -k だから 一 2(sa+tp).p=-√3k 2(sat)=√3k ks+2t=-√3k ①,②より,s=1,2,3に 247 t=- M OA=d, OP = b とおいて, 次の問いに答えよ。 D よって, OC=- 2√3 -a 3 3 P 注 OP=mOA+nOC とおいて, 解答と同じようにして,m, n を求 (1) 線分 OM の長さをんを用いて表せ. (2) OC を用いて表せ. (3) AC と OM が平行になるときのんの値を求めよ. 精講 (1)基本になる2つのベクトル a, に対して, lal, pl, apがわ かるので,OMをa, p で表せれば解決です (152) あるいは、 AP を求めて中線定理 (IA81) を使う手もあります。 (2) 内積がからみそう (角度の条件があるから)なのでOC=sa+tp とおい てスタートします。 (3) AC, OM をa, p で表して, 係数の比が等しくなることを使います. めたあと, 「OC=・・」と変形する方が少し計算がラクになります. (3)AC=OC-OA= A=(√3-1)ā – 2√3 kD <ポイント OM=1/21+1/23より,ACOM のとき 3 -1=- 3 3 √3-1 = 2 (1)OM= a+p 2 解答 分点1 「 IOMP=117+6P=12(+246+16円) ||=k,||=1, 1.5=||||cos = 1 3 2 だから k2+k+1 ki+k+1 OM= 4 2 ~垂直だから (2) OC=sa + tp とおくと, OC a =0 だから (sa+tp)・a=0 45+51:07. 2k's+ht=0 ..sla²+ta p=0 150 ポイント a = 0, 60, ax のとき ma+nbm'a+n'b (mnm'n'+0) ←m:n=m':n' 演習問題 159 O 平面上の3点A(2, a) (3<a<10), B(1, 2), C(6, 3) について, 次の問いに答えよ. (1) 四角形ABCD が平行四辺形のとき, Dの座標をαで表せ. (2) (1) のとき, 直線AD上の点Eで CD=CE となるものを求め、 EがADの内分点であることを示せ. ただし, E≠D とする. (3)2つの四角形ABCD と四角形ABCEの面積比が4:3のと き, αの値を求めよ. Imke

解決済み 回答数: 1
数学 高校生

この表は覚えた方がいいですか? 全ては無理だと思うので、覚える必要があるならどの範囲で覚えた方がいいかも教えていただけると嬉しいです。

三角比の表 角 sin COS tan 角 0° 0.0000 sin 1.0000 COS tan 0.0000 GRARE & WWW W W W W W WCNNNNNNNNLIGSENT 0.0175 45° 0.9998 0.7071 0.7071 0.0175 1.0000 2° 0.0349 0.9994 46° 0.7193 0.0349 0.6947 1.0355 0.0523 0.9986 47° 0.7314 0.0524 0.6820 1.0724 0.0698 48° 0.9976 0.7431 0.0699 0.6691 1.1106 49° 0.0872 0.7547 0.9962 0.6561 1.1504 0.0875 50° 0.1045 0.7660 0.6428 0.9945 1.1918 0.1051 51° 0.1219 0.9925 0.7771 0.6293 1.2349 0.1228 52° 0.1392 0.7880 0.9903 0.6157 1.2799 0.1405 53° 0.1564 0.7986 0.6018 0.9877 1.3270 0.1584 54° 0.8090 0.5878 1.3764 0.1736 0.9848 0.1763 55° 0.8192 0.5736 1.4281 11° 0.1908 0.9816 0.1944 56° 0.8290 0.5592 1.4826 0.2079 0.9781 0.2126 57° 0.8387 0.5446 1.5399 13° 0.2250 0.9744 0.2309 58° 0.8480 0.5299 1.6003 14° 0.2419 0.9703 0.2493 59° 0.8572 0.5150 1.6643 15° 0.2588 0.9659 0.2679 60° 0.8660 0.5000 1.7321 0.2756 0.9613 0.2867 61° 0.8746 0.4848 1.8040 17° 0.2924 0.9563 0.3057 62° 0.8829 0.4695 1.8807 18° 0.3090 0.9511 0.3249 63° 0.8910 0.4540 1.9626 0.3256 0.9455 0.3443 64° 0.8988 0.4384 2.0503 20° 0.3420 0.9397 0.3640 65° 0.9063 0.4226 2.1445 21° 0.3584 0.9336 0.3839 66° 0.9135 250.4067 2.2460 22° 0.3746 0.9272 0.4040 67° 0.9205 0.3907 2.3559 0.3907 0.9205 0.4245 68° 0.9272 0.3746 2.4751 0.4067 0.9135 0.4452 69° 0.9336 0.3584 2.6051 0.4226 0.9063 0.4663 70° 0.9397 0.3420 2.7475 26° 0.4384 0.8988 0.4877 71° 0.9455 0.3256 2.9042 0.4540 0.8910 0.5095 72° 0.9511 0.3090 3.0777 0.4695 0.8829 0.5317 73° 0.9563 0.2924 3.2709 0.4848 0.8746 0.5543 74° 0.9613 0.2756 3.4874 0.5000 0.8660 0.5774 75° 0.9659 0.2588 3.7321 0.5150 0.8572 0.6009 76° 0.9703 0.2419 4.0108 32° 0.5299 0.8480 0.6249 77° 0.9744 0.2250 4.3315 0.5446 0.8387 0.6494 78° 0.9781 0.2079 4.7046 34° 0.5592 0.8290 0.6745 79° 0.9816 0.1908 5.1446 35° 0.5736 0.8192 0.7002 80° 0.9848 0.1736 5.6713 36° 0.5878 0.8090 0.7265 81° 0.9877 0.1564 6.3138 37° 0.6018 0.7986 0.7536 82゜ 0.9903 20.1392 7.1154 38° 20.6157 0.7880 0.7813 83° 0.9925 0.1219 8.1443 39° 0.6293 0.7771 0.8098 84° 0.9945 0.1045 9.5144 40° 0.6428 0.7660 0.8391 85° 0.9962 0.0872 11.4301 41° 0.6561 0.7547 0.8693 86° 0.9976 0.0698 14.3007 42° 0.6691 0.7431 0.9004 87° 0.9986 0.0523 19.0811 43° 0.6820 0.7314 0.9325 88° 0.9994 0.0349 28.6363 44° 20.6947 0.7193 0.9657 89° 0.9998 0.0175 57.2900 45° 0.7071 0.7071 1.0000 90° 1.0000 0.0000 なし

解決済み 回答数: 2
数学 高校生

135. 解答では点線とか実線とか書いてますが、 写真のように答えとなる実線だけでも問題ないですよね??

214 SS TEEROHE. DUV y=sin0のグラフをもとに, 次の関数のグラフをかけ。 また, その周期を ASSYCAN SAPONTA 基本例題 135 三角関数のグラフ (1) 100 3-sinf (1)y=sin( sin (0-1)(2)=1/sino (3) y=sing S p.212 指針▷ 三角関数のグラフでは, y=sin0, y=cos0, y = tand のグラフが基本。 (1) y=sin(0-p)+q→y=sineのグラフを軸方向にp, y 軸方向に g だけ平行移動 ( 数学Ⅰで学習) (2) y=asin0→y=sin0のグラフをy軸方向にα倍に拡大・縮小 (a>0) 1 Coppa 倍ではない! (k>0) 113 200(3) y=sink0 0 軸方向に 倍に拡大・縮小 k (neal 最大,最小となる点, 0軸との交点をいくつかとって,これらを結ぶ方法も考えられ これは、グラフの点検としても有効である。 解答 Case yA (1) y=sin(0-17 ) のグラフは,y=sin0のグラー(46+x) 1 yusin 6. s0, y=tane フを0 軸方向にだけ平行移動したもので, 右の図の実線部分。 周期は2 (2) y= -sin0 のグラフは,y=sin0 のグラフを 2 1 2 y軸方向に 倍に縮小したもので, 右の図の実線部分。 周期は2 0 (3)y=sin 2のグラフは, y=sin0のグラフを軸方向 に2倍に拡大したもので, 右の図の実線部分。 周期は Bene 練習 ¥ 135 = 4T 2 p.213 解説参照。 一覧 MON -1 y O π 軸方向に2倍 π 2 XL 3/2 2π 2 次の関数のグラフをかけ。 また, その周期を求めよ。 (π) 10 3A 1 軸方向にだけ 2π TT 2 Dong 3amle= T y軸方向に1/2倍 41 10 ππ 2 2T/ -12(x)=(xール) REGORME EGNE! E27 37 747 基: 関 指針 [C 一解 よー EEN

未解決 回答数: 0