学年

教科

質問の種類

数学 高校生

数Aの図形の性質の問題です。 この問題の(3)の答えが⑦になるのですが、なぜそのようになるのか考え方が分かりません。 よろしければ、どなたか教えていただけませんか🙇‍♀️

36 難易度 ★ 目標解答時間 8分 右の図のように鋭角三角形ABC があり,その外接円 K の中心を 0, 直線OC と円Kの交点のうちCではない方の点をDとする。 また,辺BCの中点をMとする。さらに,△ABCの各頂点から対辺 に引いた3本の垂線は1点で交わるから,この点をHとする。 (1)△ABCの形状に関係なく垂直になる2直線は ア の解答群 K ア である。 B C ⑩「直線 AH と直線 BC」と「直線 BC と直線 BD」と「直線 OA と直線AD」 ① 「直線 BCと直線 BD」 と 「直線 OM と直線 BC」と「直線 OH と直線 BD」 ②②「直線AH と直線 BC」と「直線 BC と直線 BD」と「直線 OM と直線 BC」 ③「直線 AH と直線 BC」と「直線 BC と直線 BD」と「直線 AD と直線 BD」 (2)△ABCの形状に関係なく直線OM と平行な直線は AA ウ であり、直線AD と ③直線BD④ 直線AH 直線BH 平行な直線は I である。 ~ エ の解答群 と ウ の解答の順序は問わない。) ⑩ 直線 OA ① 直線 OB ② 直線 OC ③ 直線 BD ④ 直線 AH ⑤ 直線 BH ⑥ 直線 CH (3) 四角形 ADBH の種類としてあり得るものをすべてあげると,次の①~ ⑨のうち、正しい ものは である。 オ の解答群 ⑩ 台形 ② ひし形 ④ 台形と平行四辺形 ⑥ ひし形と長方形 ⑧ 平行四辺形とひし形と長方形 ①平行四辺形 ③ 長方形 ⑤ 平行四辺形とひし形 ⑦ 台形と平行四辺形とひし形 ⑨ 台形と平行四辺形とひし形と長方形 (配点 10 )

解決済み 回答数: 1
数学 高校生

(イ)で、AかBを原点に並行移動させて三角形の面積を求める方針で解こうとしました。 しかしPのy座標を出すのがとっても面倒で解答の解き方にしました。 並行移動させて面積を求める方法でとかない理由はこんなところでしょうか?

2円が互いの外側にあるとき, 0,02=5>3+r r<2 0202>3により, C が C2 を含むことはなく, C2がCを含むとき, 0.02=5<r-3 .. r>8 以上により,(0<) <2またはr>8 (イ)この円をCとすると, P2> C: (x+1)+(y-3)²=20 -B (-1,3) により中心はB(-1, 3), 半径はr=2√5 直線AB と円Cとの交点のうち, Aに近い 方をP1, 遠い方をP2 とすると, APはP=P1 のとき最小, P=P2のとき最大となる. P P10 r=2√5 XA (7,-3) ここで,AB=(-1-7)2+(3+3)2=10であるから, 最小値は, AP1=AB-r=10-2√5, 最大値は,AP2=AB+r=10+2/5 C上のP2以外の点は, A を中心 とする半径 AP2の円の内部にあ るので,最大値は AP2 である. ・08 演習題(解答は p.102) (ア) 座標平面上の3つの円 C1, C2, C3 は, それぞれ中心が (0, 0) (03) (4,0), 半径が1, r2, rであり,どの2つの円も互いに外側で接しているとする. このとき, (1) 1,727 の値を求めよ. (2) C1, C2 C3 のそれぞれと互いに外側で接しているとき,円Cの半径 と中心の座標 (a, b) を求めよ. (ア) 円の半径と中心間 (イ) ABを底辺と見た ときの高さの最大・最小 円の中心を補助にし (宮崎大工) の距離に着目する. (イ) 2点A(3, 1), B(1,4)と,円 (x-1)2+(y+2)=4がある. この円上を動く点 コー 最大値は +√ である. (慶大・薬) てとらえる. P と, A, B とでできる ABPの面積の最小値は [ 87

解決済み 回答数: 1