学年

教科

質問の種類

数学 高校生

この問題の8C7は分かるけど、8C8の意味がよく分かりません、、教えてほしいです🙇‍♀️🙇‍♀️

げた こと ると → 仮 さい 実験 補充 例題 157 反復試行の確率と仮説検定 00006 箱の中に白玉と黒玉が入っている。 ただし, 各色の玉は何個入っているかわ からないものとする。 箱から玉を1個取り出して色を調べてからもとに戻す ことを8回繰り返したところ,7回白玉が出た。 箱の中の白玉は黒玉より多 いと判断してよいか。 仮説検定の考え方を用い, 基準となる確率を0.05 とし て考察せよ。 CHART & SOLUTION 「箱の中の白玉は黒玉より多い」 という主張に対して,次の仮説を立てる 基本 155 61 仮説 白玉と黒玉は同じ個数である そして、仮説, すなわち, 箱から白玉を取り出す確率がであるという仮定のもとで7回 1 2 以上白玉を取り出す確率を求める。なお、箱から玉を取り出してもとに戻すことを8回繰 り返すから, 反復試行の確率 (数学A) の考え方を用いて確率を求める。 反復試行の確率 1回の試行で事象Aの起こる確率をとする。この試行をn回行う反復試行で,A がちょうど回起こる確率は nCrp (1-p) ただし = 0, 1, ......,n なお, Cr は異なるn個のものから異なる個を取り出して作る組合せの総数である。 5章 答 19 箱の中の白玉は黒玉より多い [1][ の主張が正しいかどうかを判断するために,次の仮説を立て 果の る。 仮説 箱の中の白玉と黒玉は同じ個数である [2] [2] の仮説のもとで,箱から玉を1個取り出してもとに戻す ことを8回繰り返すとき, 7回以上白玉を取り出す確率は C(1/2)^(1/2)+.C.(1/2)^(1/2)-12/(1+8)=2536 9 = 0.035······ ◆黒玉を取り出す確率は これは 0.05 より小さいから, [2] の仮説は誤りであると考え られ, [1] は正しいと判断できる。 1-12-12 である。 00 仮説検定の考え方 したがって, 箱の中の白玉は黒玉より多いと判断してよい。 inf条件が 「8回繰り返したところ, 6回白玉が出た」 であるなら, 6回以上白玉を取り出す確率は C(1/2)^(1/2)+C(1/2)^(1/2)+nCd(1/2)^(1/2)2-12/21 (1+8+ (1+8+28)= -=0.144...... 37 256 これは 0.05 より大きいから, 白玉は黒玉より多いと判断できない。 [2] の仮説は棄却されない。 なお、白玉を取り出す回数をXとすると, [1] の主張が正しい, つまり、白玉は黒玉より多いと 判断できるための範囲は、例題の結果と合わせて考えると,X≧7 である。 PRACTICE 157° AとBがあるゲームを10回行ったところ,Aが7回勝った。この結果から,AはB より強いと判断してよいか。 仮説検定の考え方を用い, 基準となる確率を0.05 とし

解決済み 回答数: 1
数学 高校生

(2)についてです。 回答には相加相乗平均が用いられていますが、相加相乗平均でわかるのはtの取りうる値が2以上に限定されることであって、tが2以上のすべての実数をとりうるかどうかはわからないのと思います。そのため、(2)の回答に用いることはできないと私は考えたのですが、どう... 続きを読む

316 第5章 指数関数と対数関数 Think 例題160 指数関数の最大・最小 (2) **** 関数 y=(4*+4¯*)-2a (2'+2) +1 について、 次の問いに答えよ. Q(1)2+2=t とおいて,yをtの関数で表せ. (2)のとり得る値の範囲を求めよ. ○(3)yの最小値が10のとき αの値を求めよ. 考え方 (1) = (2')', 4'=(2x)より, a+b= (a+b)-2ab を利用して変形する. (2) 相加平均相乗平均の関係を利用する。」 (3)(1)(2)より与えられた関数は, tについての2次関数になって いる. との関係 (a>0, x:実数) axXa=1 (相加平均) ≧ (相乗平均) a+bzab (a>06>0 のとき) 2 解合 (1) 2'+2x=t のとき, 4'+4¯*= (2*)+(2^*)2 =(2'+2x)2-2.2.2 =f-2 より y=f-2-2at+1=t-2at-1 (2)20,20 より 相加平均・相乗平均の関係 から、 2*+2*2/2.2* =2 等号は, 2*2*より、x=-xつまり、x=0 の とき成り立つ. よって, tの値の範囲は, (3) (1)より, (i) a <2 のとき a+b2=(a+b)2-2. 2.2=1 相加平均・相乗平均の 関係を利用する. a+b 2 -√ab より,a+b2ab 軸は直線t=α より 軸と区間 t≧2 の位 関係から場合分けを る. (i) (i) のときのグラ は下の図のように t≧2 y=f-2at-1=(t-α)-α-1 ...... ① t=2 のとき, yは最小値10 をとる. 13 2-2a・2-1=-10 より a= 4 これは, a<2を満たさない. (ii) α≧2 のとき (i) t=α のとき,y は最小値10 をとる. したがって, ① より - a²-1=-10 2=9 より, a=±3 1 a 2 a≧2より, a=3 よって, (i), (ii)より 求めるαの値は, a=3 a 最小 練習 [160] xは実数とする。このとき、関数y=- 10 (3*+3)-(9+9)-3 3 *** そのときのxの値を求めよ. "最小 の最 (高島

解決済み 回答数: 2
数学 高校生

(4)からまったくわかりません... 解説お願いします

Think 例題 153 総合問題 右の図は,生徒20人に行った 整理と分析 301 **** 点で図形の得点が5点である生徒の 人数は2人である. の結果をまとめたものである. 関数 の得点xを横軸に,図形の得点yを 縦軸にとっている.図の中の数値は xyの値の組に対応する人数を表し ている。 数と図形のテスト(ともに10点満点) 10 9 8 1 7 1 11 6 1 11 y 5 121 4 たとえば、関数の得点が7 3 1 22 1 2 2 1 各生徒の得点について, x+y の最大値と, x-yの最大値 を求めよ. 0 01234 5 6 7 8 9 10 X が S 5. (2)図をもとに,次の表を完成させよ.また,各テストの得点の平均値 を求めよ. 点(点) 0 1 2 3 4 5 6 7 8 9 10 2435 10 関数(人) 0002 図形(人) 012335231 (3)(2)の表を使って各テストの標準偏差を求めると, 関数は2.8点 図形は3.6点, 関数と図形の得点の共分散は2.55 であった. 関 数と図形の得点の相関係数の値を四捨五入して小数第2位まで求 めよ.ただし,√7=2.646 とする.A0.80 右の表は、別の5人の生徒 A, B, 5人の生徒 ABCDE C,D,Eに同じ問題のテストを行 った結果である. 5人の関数と図 形の得点の平均値は, それぞれ 20 165 関数の得点 7 4 6 9 4 6 図形の得点 5 4 5 6 5 人の得点の平均値と同じであった.20人にこの5人を加えた合計 25人の生徒に関する関数と図形の得点の相関係数Rの値を小数第 2位まで求めよ. (5)これらのテストの結果について、次の①~③は正しいといえるか、 ① 生徒 25人の得点について、関数と図形の平均値からの散らば り具合は同じである. ② 生徒 20人の関数と図形の得点の正の相関はやや強いが,A~ Eの5人が加わると正の相関は少し弱まる. ③ 生徒 25人の図形の得点が一律に1点上がれば,25人の関数と 図形の得点の相関係数の値はより大きくなる. 第5章

回答募集中 回答数: 0