学年

教科

質問の種類

数学 高校生

⑵なんですが、問題の意味も、解説の意味も全然わかりません、教えてほしいです🙇‍♀️

重要 例題 71 定義域によって式が異なる関数 次の関数のグラフをかけ。 (1) y=f(x) (2) y=f(f(x)) 関数f(x) (0≦x≦4) を右のように定義すると (0≦x<2) f(x)= (x)=x 8-2x (2≦x≦4) 123 定義域によって式が変わる関数では, 変わる 境目のxyの値に着目。 (2) f(f(x)) f(x)のxf(x) を代入した式で, 0≦f(x) <2のとき 2f(x), 2f(x) 4のとき 8-2f(x) (1) のグラフにおいて, 0 f(x) <2となるxの範囲と, 2≦f(x)≦4となるxの範囲 を見極めて場合分けをする。 (1) グラフは図 (1) のようになる。 3章 2 ⑧関数とグラフ (2f(x) (0≤f(x)<2) 解答 (2) f(f(x))= 8-2f(x) (2≤f(x)≤4) よって, (1) のグラフから 0≦x<1のとき f(f(x))=2f(x)=2.2x=4x 向 f(f(x))=8-2f(x)=8-2.2x =8-4x 1≦x<2のとき 2≦x≦3のとき f(f(x))=8-2f(x)=8-2(8-2x) =4x-8 3<x≦4 のとき f(f(x))=2f(x)=2(8-2x) =16-4x よって, グラフは図 (2) のようになる。 (1) (2) YA YA 4 2 1 変域ごとにグラフをかく。 (1) のグラフから、f(x) の変域は 0≦x<1のとき 0≤f(x)<2 1≦x≦3のとき ① 2≤f(x)≤4 3<x≦4のとき 0≤f(x)<2 また, 1≦x≦3のとき, 1≦x<2なら f(x)=2x 2≦x≦3なら f(x)=8-2x のように2を境にして 式が異なるため、 (2) は左 その解答のような合計4通 りの場合分けが必要に なってくる。 0 「 「 1 J 1 2 3 4 X 0 1 2 3 4 X (2)のグラフは、式の意味を考える方法でかくこともできる。 [1]f(x) が2未満なら2倍する。 [2]f(x) が2以上4以下なら, 8から2倍を引く。 右の図で、黒の太線 細線部分が y=f(x), 赤の実線部分が =f(f(x)) のグラフである。] なお,f(f(x)) f(x) f(x) の 成関数といい、 (fof) (x) と書く (詳しくは数学Ⅲで学ぶ)。 YA 8から2倍を 引く 4 2 0 4 x 2倍する

回答募集中 回答数: 0
数学 高校生

高一数学です。(4)と(5)がわかりません。 4は頂点のy座標が正であるからの後に出てきたマイナス4a分のb2乗-4acは一体なんですか?? その後の(1)よりの説明もよくわかりません。 5はa-b+cはなぜx=-1のときの値だとわかるんですか?

りするとき すいミスをい にしておき 1/2 {}中の 基本 例題 52 2次関数の係数の符号とグラフ 2次関数y=ax2+bx+c のグラフが右の図で与えら れているとき,次の値の符号を調べよ。 (1) a (2) b (4)62-4ac (5) a-b+c (3)c 00000 A AR x MOITUJO TRE p.91 基本事項 4 基本 51 97 CHART & THINKING グラフから情報を読み取る ミス 式の値は直接求めることができない。 「上に凸か,下に凸か」, 「軸や頂点の位置」, 「軸との交点の位置」 などに着目して, 式の値の符号を調べよう。 上に凸か, yA 下に凸か? 頂点の座標は? x=-1 における 3章 10 y 座標は? 7 x 軸との交点の 位置は? |軸の 位置は? 関数とグラフ ax² + bx + c = a(x+2)² - b²-Aac b 62-4ac 4a よって, 放物線y=ax2+bx+c の軸は 直線 x=-- 62-4ac 頂点のy座標は 4a る。 b ←ax2+bx+c =alx'+ = a(x²+x)+c 2a' b y軸との交点のy座標はcであ 400 =a 2a {(x+2)-(2)+c b 2a 3(x+2)-a (20)²+c b 62 また, x=-1 のとき y=a(-1)2+6(-1)+c=a-b+c -a(x+2)- 2a 62-4ac (1) グラフは上に凸の放物線であるから a<0 4a b 平 b (2) 軸が x<0 の部分にあるから <0す。 ↓ 2a ->0 2a (1)より, a<0 であるから b<0 (3) グラフがy軸の負の部分と交わるから c<0 62-4ac (4) 頂点のy座標が正であるから ->0 4a (1)より, a < 0 であるから -(b2-4ac)<0 すなわち b2-4ac > 0 (5) a-b+c は, x=-1 におけるyの値である。 y>0 ←放物線 y=ax2+bx+c について, x軸と異なる2点で交 わる⇔ b2-4ac > 0 が成り立つ (p.139 以降 を参照)。 グラフから,x=-1 のとき すなわち a-b+c>0 PRACTICE 52Ⓡ 右の図のような2次関数y=ax2+bx+c のグラフについて, 次の値の正.0.負を判定せよ。 (1) a (4)62-4ac (2) b (3)c (5) a+b+c (6) a-b+c 0 1 x

解決済み 回答数: 1