学年

教科

質問の種類

数学 高校生

この問題の(2)の図を書きなさいと言われたのですが、図が書けません💦 (2)の答えはツテト⋯200 ナニヌ⋯100 です。 (2)の解き方と図を教えてください

クンソ 欲 良之の不 呼、其直 馬 68 **Try more 29 2 S商事がR市にジュース店舗をオープンさせることにした。 ジュースは1杯につき500g で、果汁と炭酸水を配合して作る。 顧客の好みに合わせ、配合の仕方によって次の2種類 のジュースを用意する。 ジュース A: 果汁 350 g と炭酸水 150g を合わせた果汁たっぷりタイプ 販売価格は250円 ジュース B: 果汁 250gと炭酸水 250gを合わせた強炭酸タイプ 販売価格は200円 これらのジュースを作るために, 材料として果汁を100kg, 炭酸水を60kg用意した。 た だし、作ったジュースを保管しておく冷蔵庫があまり大きくなく. 合計で300杯までしか 用意できないとする。 以下の設問において桁が余るときはより大きい位の数を0とせよ。 Try more 69 (2)xy 平面上において, 連立不等式 (a) が表す領域をTとする。 売上高のとりうる値の範 間は、直線(b)を領域内の座標とy座標がともに整数である点を通るように動かすと き、切片のとりうる値の範囲を考えることで求めることができる。よって、売上高が 最大となるのは、ジュースAをツテト ジュースBを ナニヌ売るときである。 " = 200のとき Kは最大となるので ③より y 100 のようになる。 ジュースをジュースBをy杯用意するとしてxとyの関係式を立てると,次 350x+250g=100,000 111 ア x+ イy 2000 果汁のハンイ ワ x+1 エオカキク ③x+y=ケコサ個数のハンイ(300杯までしか用意できない) [x≥0, y≥0 また、用意したジュースが全部売れたときの売上高を円とすると, シスセソタチ ......(b) となる。 150x +250y=60,000円 炭酸水のハイ k 1杯の 1杯の 料金 料金 ①、②をとくと 4x800 0≦x≦200 200y -K 200/ 100 120° 切片 200 5y=600 600+5y=1200 カク 1200 ケガサ 5y=600 0≤45306 300 シズセ 7x+.5y=2000 30+5g=1200 4才 = 800 250 ツテト 200 ナニヌ 100

回答募集中 回答数: 0
数学 高校生

数Ⅱ微分についての質問です (2)において「定義に従って」という記述がないにも関わらず、定義に従って微分しているのはなぜでしょうか? 基本的に「定義に従って」という記述がない時は極限を使わなくていいと思っていました

316 基本 例 195 平均変化率と微分係数 関数f(x)=xxについて、 次のものを求めよ。 (1) x=1からx=1+h (h≠0) まで変化するときの平均変化率 (2) x=1における微分係数 (3) 曲線y=f(x) 上の点A(t, f (t)) における接線の傾きが-1 となるとき, tの値 f(b)-f(a) 指針 (1) 平均変化率は y f(b) P.314 基本事項 11, 2 重要 196、 y=f(x)/ a=1, b=1+h とする。 b-a f(a) 傾きf(a) (2) x =α における 微分係数は f(b)-f(a) O f'(a)=lim b-a a b x b-a または f'(a)=lim h→0 f(a+h)-f(a) h (3)点Aにおける接線の傾きは、微分係数 f(t) に等しい。 f(1+h)-f(1)(1+h)-(1+h)-0_h+h h=0であるから,んで 約分できる。 <a=1,6=1+hで, (1) = = 解答 (1+h)-1 h h =h+1 分母が0にな「ないようできるだけ事形 (2) (1) から f'(1)=lim f(1+h)-f(1) =lim(h+1)=1 別解 f(1)=limf(b)-f(1) =lim- 62-6 b(b-1) =lim b-1 6-1 b-1 6-1 6→1 b-T h→0 (1+h)-1 h→0 6 →aとん→0 は同値。 f(b)=62-b,f(1)=0 =limb=1 61 (3)f(t)=limf(t+h)-f(t) h→0 =lim h→0 h {(t+h)2-(t+h)}-(t-t) =lim h→0 2th+h²-h h h =lim(2t+h-1)=2t-1 h→0 点Aにおける接線の傾きが-1であるから 微分係数 f(t) を求める。 ◄2th+h²-h =h(2t+h-1) h≠0であるから,んで 約分できる。 f'(t)=-1 よって 2t-1=-1 ゆえに t=0

解決済み 回答数: 1