学年

教科

質問の種類

数学 高校生

数Ⅱ黄チャート基本例題85、PR85で質問です どちらも3点を通る円の方程式を求めよという問題なのですが、基本例題とPRで解き方が違うので、使い分けがあるのかを知りたいです。 また、授業では基本例題の解き方しかやっていないので、PRの解き方も解説してほしいです。 長くなりま... 続きを読む

0 本 例題 85 円の方程式の決定 (2) 00000 3点A(3,1),B(6, 8), C(-2,-4) を通る円の方程式を求めよ。 p.138 基本事項 1 141 CHART & SOLUTION 3点を通る円の方程式 一般形 x2+y2+x+my+n=0 を利用 ① 一般形の円の方程式に, 与えられた3点の座標を代入 2 1,m,nの連立3元1次方程式を解く。 基本形を利用しても求められるが, 連立方程式が煩雑になる。 垂直二等分線の利用 3 求める円の中心は, ABC の外心であるから, 線分AC, BC それぞれの垂直二等分線の 交点の座標を求めてもよい。 12 解 求める円の方程式を x2+y2+lx+my+n=0 とする。 点A(3, 1) を通るから ←一般形が有効。 32+1+37+m+n=0 点B(6, -8) を通るから 62+(-8)2+61-8m+n=0 点C(-2, -4) を通るから (-2)^(-4)2-21-4m+n=0 整理すると 31+m+n+10=0 61-8m+n+100=0 2 円と直線,2つの円 21+4m-n-200 これを解いて l=-6,m=8, n=0 (第1式)+(第3式)から 1+m-2=0 (第2式) + (第3式) から 21-m+20=0 よって 3/+18=0 など。 よって, 求める円の方程式は x2+y^2-6x+8y=0 [別解 △ABCの外心Dが求める円 の中心である。 yA A /② 0 x 線分 AC の垂直二等分線の方程式は 中心D C 3 =-x- 線分ACの すなわち y=-x-1・・・・・・ ① 線分 BC の垂直二等分線の方程式は B 傾き1 y+6=2(x-2) すなわち y=2x-10 ② ①,②を連立して解くと x=3,y=-4 線分 BC の 中点 (2, -6), よって, 中心の座標はD(3,-4), 傾き - 12 半径は AD=1-(-4)=5 ゆえに求める円の方程式は (x-3)2+(y+4)²=25 RACTICE 85Ⓡ ② 3点 (4-1) (6, 3), (-3, 0) を通る円の方程式を求めよ。

解決済み 回答数: 1
数学 高校生

数学の問題です。110で最小値を求めるのに直線と点の距離の関係の公式を右のノートで使っているのですが何故か答えがあいません。答えは1/2で私は-5/4だと思いますなぜですか?

x-y 0から 求める a, b の条件は,①,② から, [b≦a+5 b 62-2a-1 b≥a+5 または と と同値である。 b≤-2a-1 よって、 求める領域は図の斜線部 分。 ただし、境界線を含む。 -5 -2_1 [inf. F f(x, y) =ax-y+b として, f(-1, 5)f(2,-1)≦0 と考えることもできる。 3章 14,67 PR ・607 M 4週間でのAの生産台数をx, Bの生産 台数をyとすると,条件から 組立 18 A 6 時間 2時間 x0,y≧0, B 3 時間 5時間 6x+3y≦18・4, 2x+5y ≦10・4 すなわち x = 0, y≧0, 2x+y≦24, 2x+5y≦40 離は この連立不等式の表す領域は右の図 の斜線部分である。 ただし, 境界線 を含む。 合計生産台数をkとすると YA PR ある工場で2種類の製品 A, B, 2人の職人MWによって生産されている。 製品Aについて ③109 は 1台当たり組立作業に6時間,調整作業に2時間が必要である。 また, 製品Bについては, 組立作業に3時間,調整作業に5時間が必要である。いずれの作業も日をまたいで継続するこ とができる。 職人Mは組立作業のみに, 職人Wは調整作業のみに従事し,かつ, これらの作業に かける時間は職人Mが1週間に18時間以内, 職人W が 1 週間に 10 時間以内と制限されている。 4週間での製品 A,Bの合計生産台数を最大にしたい。 その合計生産台数を求めよ。 W [岩手大] infx, y がいくつか の1次不等式を満たすと xyのある1次式の 値を最大または最小にす る問題を線形計画法の間 題といい, 経済の問題で も利用される。 最大16:07 (2)(46) b=6 6=-20 + 調整 -644 半径 6= 1-2151 い 2 2 k=x+y y=-x+k (10,4) これは傾きが-1, y切片がんの直線 を表す図から, 直線 ①が点 (10,4) を通るとき,kの値は最大になり k=10+4=14 O 12 ←直線①の傾きが-1 から,領域の境界線の傾 きについて 5 6 =kta -2<-1<-2 したがって,合計生産台数は最大14台である。 ← A10台 B 4台 ←14.51 16=9-4=21 PR 座標平面上の点P(x, y) が 3y≦x +11, x+y-5≧0,y≧3x-7 の範囲を動くとき, @110 x+y2-4y の最大値と最小値を求めよ。 与えられた連立不等式の表す領域 Dは, 3点A(1, 4), B(3,2), C(4,5) を頂点とする三角形の周 [類 北海道薬大] 境界線の交点 A, B, C C の座標はそれぞれ次の 連立方程式を解くと得ら れる。

解決済み 回答数: 1
数学 高校生

数1の二次方程式、写真のアの2行目の式の意味が分かりません。 イは複合同順のとこが何言ってるか分かりません。 ウは最後の2行が意味わかりません。 よろしくお願いします🙇

4/9x 12次方程式 方程式を解く (ア)の方程式 x2-3+2/2x=0 を解け. (イ) 連立方程式x+2y=-5,x'+xy+y2=16 を解け . (ウ)の4次方程式 3.5.344.2+5x+3=0は,t=x+ (摂南大工) (山梨学院大 経営情報, 改題) 1 とおけば,tの2次方程式[ I である. (中京大文系) に変形できる. 上記の4次方程式の解の最小値は| A b±√62-4ac 解の公式 2次方程式 ax2+bx+c=0(a≠0) の解は, x= 2a - b±√b2-ac 特に, 1次の係数が “偶数 (2倍の形)” である ax2+2bx+c=0の解は,x=- a 解の公式は2か所に散らばっているェを平方完成によって1か所にすることで導ける (p.30). (f(x)=g(x) f(x) の符号で場合分けするか, p.17 で述べた次の言い換えを使う. [g(x) ≧0 に着目] f(x)=g(x) 「g(x) 20かつf(x)=g(x)」 または 「g(x) ≧0 かつf(x)=-g(x)」 相反方程式 (ウ)のように,係数が左右対称な方程式を相反方程式と言う. 相反方程式は,両辺を 1 x2で割り, x+-=t とおいてt の方程式を導いて解くのが定石である. 解答 x (ア)|x2-3|=-2√2のとき,左辺≧0 なので, r≦0 のもとで x²-3=-2√2x x²-3=2√2x つまり2+2/2x3=0と2√2x3=0 を解けばよい. x0 を満たすものを求めて, x=-√2-√5/√2-√5 (イ) 第1式から,x=-2y-5・・・・・① であり, 第2式に代入して (-2y-5)2+(-2y-5)y+y2=16 . 3y2+15y+9=0 :y2+5y+3=0 -5±√13 よって,y= であり,①に代入して, x=千 13 (複号同順) 2 ←前文で述べた言い換えを使った. 2/20 を忘れないように. ←係数にルートが入っていても解 の公式は使える. 等式の条件は1文字を消去する のが原則. yの±とェの王において, 上側 ←同士と下側同士が対応する. 方程式の左辺はx=0のとき3で 0にはならない。 |-44=0 (ウ) x=0は解ではないから, 方程式の両辺を (0) で割って, .. 3x2+5x-44+ + 5 3 0 x² IC 3{(x+1)-2} +5(x+2)-44- (t+5)(3t-10)=0 (+2)+(+税) 44=0 .. 3t+5t-50=0 it=-5, 10 3 xtの符号は一致するので,最小の解はt=-5を満たす. + -5-21 り,x2+5x+1=0 この小さい方の解が答えで,= 2 1 演習題(解答は p.54) -=-5によ IC 両辺を倍して整理した. (ア) 連立方程式|x+2+y=1,y2-2x=6を解け (大阪工大 情報科学 ) (イ) 4次方程式-6x2+18 +9=0 ① の解を求める. x=0は①の解でな いから,t=xt によっておき換えることにより, tについての2次方程式 I (ア) 1文字消去.

解決済み 回答数: 1
数学 高校生

(2)の場合分けについて質問です。私は問題を解くときに(i)0<a<2(ii)2≦aのように解答と逆に=をつけて場合分けしたのですが間違いですか。≦は確か、<または=、と言う意味だったと思うのですが、、、 よろしくお願いします。🙇

重 定価 とき 146 基本例 85 2次関数の係数決定[最大値 DO |(1) 関数y=-2x2+8x+k (1≦x≦4) の最大値が4であるように、定数の値 | (2) 関数y=x2-2ax+α2-2a (0≦x≦2) の最小値が11になるような正の定数 を定めよ。 また、このとき最小値を求めよ。 a の値を求めよ。 基本8082 重要 6 指針 関数を基本形y=a(x-b)'+αに直し, グラフをもとに最大値や最小値を求め、 (1)(最大値)=4(2) (最小値) =11 とおいた方程式を解く。 (2) では, 軸x=α (a>0) が区間 0≦x≦2の内か外かで場合分けして考える。 CHART 2次関数の最大・最小 グラフの頂点と端をチェック 区間の中央の値はって あるから,軸x=2は区 間1≦x≦4で中央より 左にある。 解答 (1) y=-2x2+8x+k を変形すると y=-2(x-2)2+k+8 y k+8--- 最大 よって, 1≦x≦4においては, 右の図から, x=2で最大値+8 0 1 2 をとる。 ゆえに k+8=4 最小 よって k=-4 んの方程式を解く。 このとき,x=4で最小値 -4 をとる。 最大値を4とおいて、 (2) y=x2-2ax+ α-2a を変形すると y=(x-a)²-2a [1] 0<a≦2 のとき,x=αで 最小値 2α をとる。 [1] y 軸 11 a 2a=11 とすると α=- 2 0 2 x これは 0<a≦2を満たさない。 [2] 2<αのとき, x=2で の 「αは正」に注意。 0 <a≦2 のとき, 軸 x=αは区間の内。 頂点 x=αで最小。 の確認を忘れずに。 -2a 最小 2<αのとき, 軸x=aは区間の右外。 →区間の右端 x=2で最 最小値 22-2a・2+α2-2a, つまりα-6a+4 をとる。 α-6a+4=11 とすると α²-6a-7=0 [2] YA a2-6a+4! 最小 a これを解くと a=-1,7 02 2 <αを満たすものは a=7 以上から、求めるαの値は α=7 -2a (a+1)(a-7)=0 の確認を忘れずに。 85 んの値を求めよ。 練習 (1) 2次関数y=x²-x+k+1の-1≦x≦1における最大値が6であるとき, 定数

解決済み 回答数: 1