学年

教科

質問の種類

数学 高校生

組(a1 a2 a3)と組み合わせ(a1 a2 a3)は一対一対応 の一対一対応とはどのような意味ですか? 詳しく教えてくださいお願いします。

ステージ2 典型手法編 場合の数 前 ITEM で見たように,順列の方が順序を のがふつうです.しかし、条件として順序が指定されている場合には, きます. ここが ツボ! 順序が指定されているなら、「順列」の代わりに「組合せ」を参」 例題20A サイコロを3回投げるとき, 出た目を順に a1,a2,a3 と する. a <az<α3 を満たす組 (a1,a2, α3) の個数を求めよ. 着眼1 第何回の目であるかに応じて au, 42, 43 と名前が付けられていますから、 ○○を区別 ? ろん出た目の順番を区別して考えます. 「組」とは順序を考えたものですから、たとえば (2,3,5)(2,5,3) を異なるものとして数えるべきなのですが,本間では a1,a2, α3 の大小関係が指定 れているため,(2,5,3) などはカウントしません。つまり どの3種類の目が出るか が決まれば,組(a1,a2, α3) も自動的に決まってしまうのです. [解答 a <az<αのとき 6C3= 順列 よって求める場合の数は、サイコロの目 : 1,2,3,4,56から異なる3個の目を選ぶ 組合せを考えて α3)」と「組合せ {a1,a2,a3}」は1対1対応. 「組(a1,a2, 6・5・4=20(通り). 3.2 事情が変わ 解説本来「組合せ {a1,a2,a3) (a1,a2,a3 は全て相異なる)」1つから作られる 「組 (a1,a2, as)」の個数は,3!=6通り)です。つまり「組合せ」と「組」の対応関係は 1:6 ですね.しかし本問では大小関係 「a <az<as」により1:1の対応となります. 組合せ 順序指定なら 1対1 順列 12, 43} は同じものを含む ことが許されるため, やや難しくなり,重複組合せ( ITEM24, ITEM39) を考える ことになります. 参考1 本間の条件が a≦a≦as となった場合, 組合せ {a1,a2, internet の8文字を並べるとき, 3つの母音iee が 例題20B この順に並ぶものは何通りか? 着眼2] 前問において「大小関係α <az<a」が決まって やって みよう1

未解決 回答数: 1
数学 高校生

写真のところの式変形はどのように行なっているんですか?

う 10 確率の最大値 赤, 青, 黄3組のカードがある。 各組は10枚ずつで,それぞれ1から10までの番号がひとつず つ書かれている.この30枚のカードの中からん枚 (4≦k≦10) を取り出すとき, 2枚だけが同じ番 で残りの(k-2) 枚はすべて異なる番号が書かれている確率をp (k) とする. ( 4≦k≦9) を求めよ. p(k+1) (1) p(k) (2) (k) (4≦k≦10) が最大となるkを求めよ. (福岡教大/一部省略) 確率の最大値は隣どうしを比較 確率力 (k) の中で最大の値 (または最大値を与える) を求める 問題では,隣どうし [pkpk+1)] を比較して増加する [p(k)≦p(k+1)] ようなんの範囲を求 める. p(k)とp(k+1) の大小を比較すればよいのであるが, p(k) とp(k+1)は似た形をしているの 力(k+1) で を計算すると約分されて式が簡単になることが多い. p (k) である. -≧1⇔p (k)≦p (k+1) 解答量 (1) 30枚からk枚 (4≦k≦10) を取り出す取り出し方は 30C通りあり,これ らは同様に確からしい。このうちで題意を満たすものは、同じ番号の2枚につい て番号の選び方が10通りで番号を決めると色の選び方が 3 C2 通り, 異なる番号 (-2)枚について番号の選び方が gk-2 通りでそれを1つ決めると色の選び 方が3k-2通りある. よって, p(k)= 10.3・9Ck-2・3k-2 30 Ck p(k+1) 9Ck-1.3k-1 p(k) 30! 30 Ck 30Ck+1 9Ck-2.3k-2 (k+1)! (29-k)! 30! k! (30-k)! (k-1)! (10-k)! 100% 9! p(k+1) p (k) となり, p (k) が最大となるには 6. 18 -≧ 1⇔ SE p (k+1) p (k) (k-2)! (11-k)! 9! 3 (k+1) (11-k) -≧1 (k-1) (30-k) -3 3(k+1) (11-k) (-1)(30) (2) p(k)≦p(k+1) ⇔ ⇔3(k+1)(11-k)≧(k-1)(30-k)⇔k (2k+1)≦63..... 5·(2.5+1)<636・ (2・6+1) であるから, ①を満たすんはk=4,5で①の等 kは4~9の整数 号は成立しない . よって p(4) <p (5) <p(6), p(6) > p (7) > p (8) > p (9) > p (10) 10.3 を約分 YouTube & Fa 1 順に. 1 30Ck+1' 30Ck 9Ck-1. 9Ck-2 最後の3は3-1と3-2 を約分. p(k)>0, p(k+1) >0 10 演習題 ( 解答はp.50 ) 当たりくじ2本を含む5本のくじがある. このくじを1本引いて,当たりかはずれか を確認したのち,もとに戻す試行をTとする。 試行Tを当たりくじが3回出るまで繰り 返すとき,ちょうど2回目で終わる確率をp (n) とする。 改 (1) 試行Tを5回繰り返したとき,当たりが2回である確率を求めよ. (2) n≧3として、p(n) を求めよ. (3) p(n) が最大となるnを求めよ. ( 芝浦工大) 10.11.12 回目が3回目の当たり なので,それまでに当た りは2回 (3) は例題と 同じ手法を使う. 43

回答募集中 回答数: 0