学年

教科

質問の種類

数学 高校生

仮説検定の問題です。 P(Z≧2)の前との間の途中式がよく分かりません。 これはx-(エックスの平均)に何かを代入しているの でしょうか? また分母の計算も有理化などをしているのですか? 解説して貰えると助かります🙏🏻

27 ある果樹園で生産されるオレンジは、例年1個あたりの重さの平均が 95g, 標準偏差が6gであ るが, 今年はより大きな果実を生産するために肥料を変えた。 今年のオレンジから 144個を無作為 抽出して調査したところ,その平均は96gであった。 標本の標準偏差が6gであるとすると,今年 生産されたオレンジは例年より重くなったと判断できるか。有意水準 5% で片側検定せよ。 11 仮説検定 27 今年生産されたオレンジの重さの平均をmとする と、帰無仮説はm=95, 対立仮説はm>95 である。 帰無仮説が正しいとすると、標本平均 X の分布は 正規分布 N (95,6)と見なせる。 (3)大きさの標本の標本平均 X の標準偏差は 72 であるから 72 <4 よって n>324 よって したがって、標本の大きさを少なくとも325に すればよい。 X-95 1 P (X-95 ≧ 96-95)=P 6 6 2(1) 計測回数をnとすると, 信頼区間の幅は,信頼 合前の 度95%のとき √144 √144 0.04 2.1.96. P(Z≧2) =0.02275< 0.05 したがって,m=95 という帰無仮説は棄却される。 すなわち, 今年生産されたオレンジは例年より重く なったと判断できる。 であり,信頼度99% のとき 0.04 2.2.58・ 「n である。 よって、区間の幅が狭いのは、 信頼度 95%の信頼

解決済み 回答数: 1
数学 高校生

この問題のサシスについて質問です。 0.95になると、なぜ有意水準の棄却域が②のようになるのでしょうか? 解説お願いします🙏

アプローチ ①問われている。 ②それぞれの資料の特徴をとらえる step1 例題で 速効をつかむ アプローチ 以下の問題を解答するにあたっては,必要に応じて正規分布表 (75ページ)を用い 2 例題 てもよい。 正四面体の4つの各面に1から4までの数字が1つずつ書かれている いころがある。このさいころを4800回投げたところ、4の目が1260回 でないと判断してよいかを 出た。このさいころは、4の目が出る確率が一 有意水準 5%で仮説検定する。ただし、このさいころの出た目とは,正 四面体の底面の数字とする。 まず, 4の目が出る確率を とするとき、帰無仮説は「4の目が出る確率はアであり 対立仮説は「4 の目が出る確率は「イ」である。次に帰無仮説が正しいとすると、4800回 のうち4の目の出る回数Xは,ウに従う Xの期待値 m と標準偏差のは,m=エオカキ .o=|クケ | である。 よって, X-m Z= ーは近似的にコに従う。 0 正規分布表より P(-1.96 ≦Z≦1.96) サ シス であるから,有意水準 5%の棄却域はセとなる。 X=1260のときZの値は棄却域に入るから帰無仮説は棄却できる。 ア イの解答群 Op≤ ≤10 P< 0 P = p> ウ コの解答群 ⑩ 正規分布N4800, ③二項分布B 4800, 1 セの解答群 ② p ③ 1 ①正規分布N (1, 0) 16 ② 正規分布N (01) 1 ⑤二項分布B(12601) ④ 二項分布B 4800, 16 ⑩ -1.96 Z 1.6 ① Z ≦ -1.96 ② Z ≦ -1.96,1.96 ≦ Z ③Z ≦ 1.96 数学-70

解決済み 回答数: 1
数学 高校生

矢印を引いているところの変形がわかりません。 どなたかすみませんがよろしくお願いします🙇‍♀️

94 難易度 ★★ SELECT SELECT 目標解答時間 15分 90 60 以下の問題を解答するにあたっては,必要に応じて巻末の正規分布表を用いてもよい。 次のような科学者 A 博士のメモが見つかった。 19 ア の解答群 89 このメモでは、小数第2位の数字が3であるかはっきりしない。 仮説検定をすることで,この確率の値について考えてみよう。 (1) 実際に粒子 Rを100個取り出したところ 31個が性質Pをもっていたとする。性質Pをもつ確 率は0.33 より小さいと判断してよいかを, 片側検定を用いて, 有意水準 5% で検定する。帰無 仮説は = 0.33 であり, 対立仮説はか ア 0.33 である。 粒子Rが性質Pをもつ確率は0.3である 256 -0.33 0.67 ×0.332 201 201 0.221 X 10 R 0.83 P 0.33 ② ≠ 20,1080 0.2389 0.88 33 14 帰無仮説が正しいとする。 粒子Rを1個取り出すとき、性質をもつならば1もたないなら ば0 の値をとる確率変数を Xとする。 X,の期待値をE(X), 分散をV(X), 標準偏差を とする。 E(X) は 0. イウであり, V(X) は 0.エオである。P(1-P)=0.33×0.67=0.24 0.33 粒子 R を 100個取り出したときに性質をもつものの個数は,二項分布カに従う! 4/0.0200 カ 1の解答群 0.4. 788 (20 ⑩ B(100,0.33) ① B(100,0.31) B(10, 0.33) B (10, 0.31) 31-0.33 とみなすと, Z= は近似的に標準正規分布に従う。 粒子を100個取り出したときに性質Pをもつものの割合をYとする。 個数 100が十分大きい YA #2 070147 ク ク ]】の解答群(同じものを繰り返し選んでもよい。 (n) (0 032 0.31 ① 0.32 0.33 0 ④ 1 (5) 10 100 320 0 of 0.47 と近似すると,P(Y≦0.31)の値は ケ であり、実際に100個取り出して31個が性 02 質をもっていたとしても、帰無仮説は棄却されず、確率は0.33 より小さいと判断できない。 ケ については,最も適当なものを、次の①~④のうちから一つ選べ。 547 0.11 ① 0.27 0.33 0.47 ④ 0.66 142 (2) 粒子R を取り出す個数をnとする。 0.31n 個が性質Pをもっていたとする。 n を十分大きいとみ なしの100をnに変えて検定するとき,帰無仮説が棄却されるようなぇの値として適するものは 0142) 200, 500, 1000, 2000, 5000, 10000 のうちに全部で コ 個ある。 0.50 10,08 143 (配点 10) (公式・解法集 107 108 110

解決済み 回答数: 1
数学 高校生

エオの分散がわかりません。 写真の上の方が問題になってます!! 私は分散と言われたら2枚目の写真のように解いていたのですが、解説を見ると蛍光ペンで引いているところのように書いてあったのですが、v(x)=p(1-p)は2枚目の写真と同様分散を求める時にはいつでも使えるのですか... 続きを読む

94 仮説検定 こう解く! 以下の問題を解答するにあたっては,必要に応じて巻末の正規分布表を用いてもよい。 次のような科学者A博士のメモが見つかった。 性質をもつ確率は0.3である このメモでは、小数第2位の数字が3であるかはっきりしない。 仮説検定をすることで,この確率の値について考えてみよう。 (1)実際に粒子 R を100個取り出したところ, 31個が性質Pをもっていたとする。 性質Pをもつ確 率は0.33 より小さいと判断してよいかを,片側検定を用いて,有意水準5%で検定する。 帰無 仮説は = 0.33 であり、 対立仮説はが 10.33 である。 解答群 ① > ア ② キ 帰無仮説が正しいとする。 粒子Rを1個取り出すとき、性質をもつならば1, もたないなら ば0の値をとる確率変数を Xとする。 Xの期待値をE(X), 分散をV(X),標準偏差をとする。 E(X) は 0. イウ であり,V(X)は0.エオである。 粒子 Rを100個取り出したときに性質P をもつものの個数は,二項分布 カに従う。 カの解答群 ⑩ B(100, 0.33) ① B(100,0.31) ② B(10, 0.33) ③ B (10, 0.31) STEP 帰無仮説を正しく捉えよう 1 ●帰無仮説が = 0.33 である から,確率の計算はその値を 用いて行う。 とみなすと Z= は近似的に標準正規分布に従う。 粒子Rを100個取り出したときに性質Pをもつものの割合をYとする。 個数 100 が十分大きい Y-# ク の解答群 (同じものを繰り返し選んでもよい。) ⑩ 0.31 ① 0.32 (2 0.33 ③ 0 11001000 ケ 2 STEP 標準正規分布に近似しよう nが十分大きいとき二項分 布は正規分布に近似でき、さ そらに確率変数の標準化により 標準正規分布に近似できる。 ここではn=100 が 「十分大 「きい数」 であることが示され ている。 =0.47 と近似すると,P(Y0.31) の値は であり、実際に100個取り出して31個が性 質Pをもっていたとしても、帰無仮説は棄却されず,確率は0.33より小さいと判断できない。es. 0001 ケについては、最も適当なものを、次の①~④のうちから一つ選べ。 ⑩ 0.11 ① 0.27 ② 0.33 ③ 0.47 ④ 0.66 (2)粒子R を取り出す個数をnとする。 0.31 個が性質Pをもっていたとする。 n を十分大きいとみ なし(1)の100に変えて検定するとき、帰無仮説が棄却されるようなnの値として適するものは 200,500, 1000, 2000, 5000, 10000 のうちに全部でコ 個ある。 STEP を大きくして考えよう 3 取り出す個数nが大きければ 大きいほど棄却域に入りやす くなる。 0.31が棄却域に入る。 ような大きさのn を考えよう。 解 答 (1) 実際の標本における性質Pをもつものの割合 小さく, 片側検定を用いるので, 対立仮説は 31 = 0.31 が 0.33 より 100 p < 0.33 ( 1 帰無仮説が正しいとすれば,性質Pをもつ確率が p=0.33 であるから イウ E(X)=p=0.33A (1 A エオ V(X)=p(1-1) = 0.33×0.67=0.2211≒0.22 粒子 R を100個取り出すとき,p=0.33 であるから,性質をもつも のの個数は二項分布 B (100, 0.33) に従う。 個数100が十分大きいとみなすと, 二項分布は近似的に正規分布に従う。 したがって,粒子Rを100個取り出したときに性質をもつものの割 定義に従うと B) 1 E(X) = 0.P(X=0)+1・P(X=1) =0.0.67+1・0.33 =0.33 1 となる。 CB 合を Y とすると, Yは期待値が E (X), 標準偏差が 0 分散の公式を用いて 100 10 の正規 分布に従う。 Point V(X)=E(X2)-{E(X)} = 0.33-(0.33) 実 定 標準 0=0 であ

解決済み 回答数: 1
数学 高校生

数学 仮説検定の問題です ピンクマーカーのところ、BはAより強い じゃだめなんですか?

AとBがあるゲームを9回行ったところ, Aが7回勝った。 この結果から, A はBより強いと判断してよいか。 仮説検定の考え方を用い, 基準となる確率を 0.05 として考察せよ。 ただし, ゲームに引き分けはないものとする。 基本191 指針 AはBより強いかどうかを考察するから、 仮説H, として 「AはBより強い」仮説 Ho として 「AとBの強さは同等である」 を立てる。 そして, 仮説 Ho, すなわち,Aの 勝つ確率が1/2 であるという仮定のもとで,Aが7回以上勝つ確率を求める。 なお,ゲームを9回繰り返すから, 確率は反復試行の確率 (数学A) の考え方を用い 求める 反復試行の確率 この試行を2回繰り返し行うとき、 事 する。 Cap (1-p "-" ただし= 0, 1, n 1回の試行で事象E が起こる確率を 象Eがちょうど回起こる確率は [補足 nCy は,異なるn個のものの中から異なる個を取る組合せの総数である。 仮説 H1 : AはBより強い 4 対立仮説 解答」と判断してよいかを考察するために, 次の仮説を立てる。 仮説 H: AとBの強さは同等である 帰無仮説 仮説 H のもとで, ゲームを9回行って, Aが7回以上勝 つ確率は +gCa c{})°(G)+c{}){})+c {\(\)\ 2 +9C7 =/(1+9+36)=512 46 0.089...... これは 0.05 より大きいから, 仮説 H。 は否定できず,仮説 H, が正しいとは判断できない。 勝つ確率は1 「反復試行の確率。 AとBの強さが同等の とき, 1回のゲームで が勝つ確率は1/2,Bが 1/2=12 - したがって, AはBより強いとは判断できない。 である。 検討 AはBより強いと判断できる条件 問題文の条件が、 「ゲームを9回行ったところ, Aが8回勝った」 であったとすると, ゲー ムを9回行って, Aが8回以上勝つ確率は oco(1/2)(1/2)+cm(1/2)^(1/2)=1/08(1 10 (1+9)= = = 0.019..... 512 これは 0.05 より小さいから, AはBより強いと判断できる。 Aが勝つ回数をX とすると, 仮説 H, が正しい, つまり,AはBより強いと判断できるた めの範囲は、例題の結果と合わせて考えると, X≧8 である。このX≧8 つまり, 仮説 H が正しくなかったと判断する範囲 (仮説H を棄却する範囲)のことを棄却域という。 乗 却域は基準となる確率 (この問題では 0.05) によって変わる。

解決済み 回答数: 1
数学 高校生

なぜ、白玉は黒玉より多いの仮説は同じなのですか? また、同じだとした時になぜ7回以上で求められるのですか? 黒と4回ずつとかじゃだめなのですか?

補充 例題 15. 反復試行の確率と仮説検定 00000 箱の中に白玉と黒玉が入っている。 ただし, 各色の玉は何個入っているかわ からないものとする。 箱から玉を1個取り出して色を調べてからもとに戻す 掲げた うこと すると さい る実験 -O 1200 計る。 つの目が 0.035 いったと やす! の方 べてい ことを8回繰り返したところ,7回白玉が出た。箱の中の白玉は黒玉より多 いと判断してよいか。 仮説検定の考え方を用い, 基準となる確率を0.05 とし て考察せよ。 CHART & SOLUTION 「箱の中の白玉は黒玉より多い」という主張に対して,次の仮説を立てる。 仮説 白玉と黒玉は同じ個数である 基本 155 そして,仮説,すなわち,箱から白玉を取り出す確率が1/12 であるという仮定のもとで7回 以上白玉を取り出す確率を求める。 なお、箱から玉を取り出してもとに戻すことを8回繰 り返すから、反復試行の確率(数学A)の考え方を用いて確率を求める。 解答 反復試行の確率 1回の試行で事象A の起こる確率をする。 この試行を回行う反復試行で,A がちょうど回起こる確率は Crp (1-p)-tat r=0, 1,, n なお, "Cr は異なるn個のものから異なる個を取り出して作る組合せの総数である。 箱の中の白玉は黒玉より多い ・・・・ [1] の主張が正しいかどうかを判断するために,次の仮説を立て る。 仮説 箱の中の白玉と黒玉は同じ個数である ・[2] [2] の仮説のもとで, 箱から玉を1個取り出してもとに戻す ことを8回繰り返すとき 7回以上白玉を取り出す確率は (1/2)^(1/2)+oc(1/2)^(1/2)=12(1+8)= 9 -= 0.035...... ◆黒玉を取り出す確率は 256 1-1/2=1/2 である。 これは 0.05 より小さいから, [2] の仮説は誤りであると考え られ, [1] は正しいと判断できる。 したがって、箱の中の白玉は黒玉より多いと判断してよい。 inf条件が「8回繰り返したところ, 6回白玉が出た」 であるなら、6回以上白玉を取り出す確率は 37 *c*()*()*+*c*(+) (+)*+.ca(+) (+)-(+8+28)=-0.14 =0.144...... 256 +8C7 259 これは 0.05 より大きいから、白玉は黒玉より多いと判断できない。 [2]の仮説は棄却されない。 なお、白玉を取り出す回数をXとすると, [1] の主張が正しい, つまり、白玉は黒玉より多いと 判断できるための範囲は、例題の結果と合わせて考えると,X≧7 である。 PRACTICE 1570 AとBがあるゲームを10回行ったところ,Aが7回勝った。この結果から,AはB して考察せよ。 ただし, ゲームに引き分けはないものとする。 より強いと判断してよいか。 仮説検定の考え方を用い, 基準となる確率を0.05 とし

解決済み 回答数: 1