学年

教科

質問の種類

数学 高校生

赤い印のところがわかりません。 logxをxで微分したらx'/xになるのはわかるのですがlogyをxで微分してもy'/yになるのはなぜですか?logyにxは入っていないので0になると思ったのですが、、、

白で書 110 例題 準 62 対数を利用する微分 関数 4 x" y= Vx +1 を微分せよ。 CHART & GUIDE (C) 累乗の積と商で表された関数の微分 両辺の対数をとって微分する 1 両辺の絶対値の自然対数をとる。 2 対数の性質を用いて,積を和, 商を差の形に,指数は前に出す。 3 両辺をxで微分する。 4 y'′ を求める。 <<<基本例題61 i 000 解答 x4 x x" log| =log| 白 x+1 x+1 3 -10g|x+1| から, 関数の両辺 <<log M=klog M の絶対値の自然対数をとると 10800x ! log|y|=1/1/1 (410g|x|-log|x+1) 3 M N log = logM-logN 書い この式の両辺をxで微分するとュ)-(1. y' 1 y 3x 1 x+1 4(x+1)-x3 1 3 x(x+1) 3x(x+1) 3x+4 ←(log|y|)'=" y よって y=x3x+4 x(3x+4) 前ページ Lecture 参照 = x+13x(x+1) 3(x+1)x+1 分母を3(x+1)* とし してもよい。 Lecture 対数微分法 対数には,logMN=logM+logN, log = logM-logN, xol M N log M=klog M の性質があるから,複雑な積, 商累乗の形の関数の微分では,両辺(の絶対値)の自然対数を ってから微分する (対数微分法という)と、計算がらくになることがある。 また、例題の関数の定義域には, x<0 を含むから, 両辺の自然対数を考えるときは絶対値を とってから自然対数をとっていることに注意しよう。 なお, αを実数とするとき (x)'=ax-1 (x>0) が成り立つ。このことは, 対数微分法を用 て,次のように証明される。 証明 y=x の両辺の自然対数をとると logy=alogx 両辺をxで微分すると y=a.- 1 y よって(x)'=y=uy=a x x x TRAINING 62 ③ ←x>0 であるからy>0 xa =axa-1 次の関数を微分せよ。 (1)y=xx (x>0) (2) (x+2)4 (3) y=3√x²(x+1)

解決済み 回答数: 1
数学 高校生

黄色部分で積の導関数を使ってるのはわかるんですけど、青の部分で使われてないのはどうしてですか? 同じように考えて黄色部分をx分のxで1と回答してしまったのですがこのやり方だとどうして解けないのかも教えて頂けたらありがたいです

基本例題 68 対数微分法 次の関数を微分せよ。 (x+2)4 (1) Vx2(x2+1) = 解答 3 指針 (1) 右辺を指数の形で表し,y=(x+2) 138x-12 (x+1) として微分することもできるが 計算が大変。 このような複雑な積・商・累乗の形の関数の微分では,まず,両辺(の絶 対値) の自然対数をとってから微分するとよい。 P → 積は和, 商は差 乗はか倍となり、 微分の計算がらくになる。 (2) (x)'=nxn-1 や (ax)' =α*loga を思い出して,y'=xxx-1=xxまたは y=x*log x とするのは誤り! (1) と同様に,まず両辺の自然対数をとる。 CHART 累乗の積と商で表された関数の微分 両辺の対数をとって微分する 1 (1) 両辺の絶対値の自然対数をとって log|y|=÷{4log|x+2|-2log|x|-log(x2+1)} 両辺をxで微分して = 1/12(142-12/2 y' y 3\x+2 よって y' = 3 [(2) 岡山理科大] NTTI (2)y=x* (x>0)1/21) 基本67 ● 1 -2(4x²-x+2) (x+2)4 3 (x+2)x(x2+1) x2(x2+1) 3 XC 4x(x2+1)-2(x+2)(x2+1)-2x2(x+2) (x+2)x(x2+1) y 2x x2+1 2 (4x²-x+2) x+2 3x(x²+1) √ x²(x²+1) (2) x>0 であるから,y>0である。 両辺の自然対数をとって logy=xlogx y=1・10gx+x.. 両辺をxで微分して よって y'=(logx+1)y=(logx+1)x* •y |x+2| x2(x2+1) dx <lvl = 3 として両辺の自然対数をと る (対数の真数は正)。 なお、 常に x2 +1> 0 対数の性質 10ga MN=10gaM+loga N loga =loga M-loga N M N loga M-kloga M (a>0, a+1, M>0, N>0) 両辺>0を確認。 logyをxで微分すると (logy)'= y 'V' 対数微分法 検討 上の例題のように,両辺の対数をとり,対数の性質を利用して微分する方法を 対数微分法 という。また,10g|y | は次のようにxで微分している。 log|yのyはxの関数であるから (10g|yl)´= calog|yl=colog!|yl.2-1dy_y dx y dx y 1

解決済み 回答数: 1