学年

教科

質問の種類

数学 高校生

右辺を1少なくしても影響無いのってなんで分かるんですか?🙇‍♂️

100回 15 等比数列と対数 00000 数列{an} は初項1, 公比5の等比数列である。 α+az+......+an≧10100 を満 [学習院大 ] 373 たす最小のnを求めよ。 ただし, 10g102=0.3010 とする。 p.365 基本事項 3. 基本11 1章 2 CHART & SOLUTION 等比数列の和と指数の問題 対数の利用 不等式の左辺を計算して整理すると 5"≧4・10200 +1 い。 等比数列 このままでは,nの値を求めるのは難しい。 そこで、対数(数学IIの内容) を利用するとよ なお、54・10100 +1 のままでは、両辺の常用対数をとって も右辺の計算がうまくできない。 そこで, nが自然数のとき 54.1000 +1と5"> 4101 は同値であるから, 5410100 の両辺の常用対数をとって計算するとよい。 5>4.10:00 5 ≧410100 +1 4.10100 4.10100+1 解答 a+a+......+an= 1・(5"-1)=1(5"−1) 5-1 S=(-1) r-1 よって与えられた不等式から 15-1)1000 整理して 5"≧4・1010 +1 ゆえに, 5>4・1010 を満たす最小の自然数nを求めればよ い。 両辺の常用対数をとると n10g10510g104+100 n(1-10g102)>210g102+100 log102=0.3010 であるから 100.6020 0.6990>100.6020 よって n> = 143.9······ 0.6990 ゆえに,n144 のとき 5">4・10100 が成り立つ。 したがって、求める最小のnの値は n=144 右辺を少なくしても 式の形からnに影響を 及ぼさない。 ←log15"=nlog105, 10g10410100 =log104+logio10100 = 2log102+100 10g105=10g10 10 2 =10g1010-10g 10 2 =1-10g102 5" は単調に増加する。

解決済み 回答数: 1
数学 高校生

539(3) なぜグラフが直線になるのですか…? logのグラフって曲線(漸近線)じゃないんです?

168 サクシード数学ⅡI 538 指針 背理法(数学Ⅰ で学習)を用いる。 ①から 2≤3y-1≤ 2+1 各辺の2を底とする対数をとると,底2は1よ り大きいから log22log23-1 log22 +1 10g 102 +10g103 が無理数でない, すなわち有理 数であると仮定すると すなわち x(y-1)log23≦x+1 log102 + 10g103= m ゆえに ① 1 log23 1 ・x+ -x+1≤y≤⋅ n log23 log23 +1 1 (ただし,m,nは互いに素である自然数) と表される。 したがって, Dは右の図 の斜線部分である。 y1 1 1 y= x+ +1 log₂3 log23 10g 102 + log103 = 10g 106 であるから,① より ただし,境界線を含む。 1 + 1 log23 m n よって log106= 6=10 両辺を乗すると 6=107 この両辺をそれぞれ素因数分解すると 2"-3" 2.5" log:3 -log23 ...... ② ②の左辺は素因数5を含まないから、矛盾。 したがって, 10g102 + 10g 103 は無理数である。 540 (1) 求める平均変化率は f(2) -f (1) 2-1 -= (2.22+2)-(2.12+1)=7 (2) 求める平均変化率は f (2) -f (1) -=23-13=7 2-1 539 (1)(1023, 10g39) = (10g23, 2) である。 x=log23, y=2のとき 541 (1) lim (2x+1)=2.1+1=3 x→1 (gab=6 2*+1 33-1 210g23 +1 33-1 + 2424155 なんかあれな 2* 210822-3 3 210g23 2.3 3 =- 3 +3=3 よって, (x,y)= (log23, 10g39) は,不等式 2*+1 3y-1 + 33-1 2* -3を満たすから,点 32-1 (2) lim (36-8h+h²)=36 h→0 2 log23 (3) lim (5+h)2-52 -=lim 3 →0 h 0 (25+10h+h2)-25 h + 10h+h2 =lim →0 h =lim (10+h)=10 h-0 542 (1) f'(1) = lim- f(1+h)-f(1) h→0 h (log23, log39) はDに属する。 (2) t>0 であるから,不等式 1-3 + 2≤0の両辺 を掛けると t2-3t+2≤0 すなわち (t-1)(-2)≦0 これはt>0を満たす。 ゆえに 1≤t≤2 =lim h-0 {2(1+h)2+(1+h)}- (2.12+1) 5h+2h2 h =lim h-0 h =lim (5+2h)=5 0 (2) f'(3)=lim f(3h)-f(3) h-0 h =lim 110 {(3+h)3-3(3+h)}-(33-3-3) h 24h+9h²+h³ =lim h-0 h したがって 1≤t≤2 3y-1 2* (3)t=- とおくと, 2'03-10 から t>0 このとき,Dを表す不等式は 2 44 +13 すなわち t-3+/4/20 543 = lim (24+9h+h2)=24 h-0 (1) y = 0 (3) y'=3.2x+7=6x+7 (2)y=5 3'-1 ゆえに, (2) から, 1≦ -M2...... ①が成り 23 (4) y=-1/233x2=-2x2 立つ。 (5) y'=4x3-5.2x=4x10x

解決済み 回答数: 1