数学
高校生
解決済み

539(3)
なぜグラフが直線になるのですか…?
logのグラフって曲線(漸近線)じゃないんです?

168 サクシード数学ⅡI 538 指針 背理法(数学Ⅰ で学習)を用いる。 ①から 2≤3y-1≤ 2+1 各辺の2を底とする対数をとると,底2は1よ り大きいから log22log23-1 log22 +1 10g 102 +10g103 が無理数でない, すなわち有理 数であると仮定すると すなわち x(y-1)log23≦x+1 log102 + 10g103= m ゆえに ① 1 log23 1 ・x+ -x+1≤y≤⋅ n log23 log23 +1 1 (ただし,m,nは互いに素である自然数) と表される。 したがって, Dは右の図 の斜線部分である。 y1 1 1 y= x+ +1 log₂3 log23 10g 102 + log103 = 10g 106 であるから,① より ただし,境界線を含む。 1 + 1 log23 m n よって log106= 6=10 両辺を乗すると 6=107 この両辺をそれぞれ素因数分解すると 2"-3" 2.5" log:3 -log23 ...... ② ②の左辺は素因数5を含まないから、矛盾。 したがって, 10g102 + 10g 103 は無理数である。 540 (1) 求める平均変化率は f(2) -f (1) 2-1 -= (2.22+2)-(2.12+1)=7 (2) 求める平均変化率は f (2) -f (1) -=23-13=7 2-1 539 (1)(1023, 10g39) = (10g23, 2) である。 x=log23, y=2のとき 541 (1) lim (2x+1)=2.1+1=3 x→1 (gab=6 2*+1 33-1 210g23 +1 33-1 + 2424155 なんかあれな 2* 210822-3 3 210g23 2.3 3 =- 3 +3=3 よって, (x,y)= (log23, 10g39) は,不等式 2*+1 3y-1 + 33-1 2* -3を満たすから,点 32-1 (2) lim (36-8h+h²)=36 h→0 2 log23 (3) lim (5+h)2-52 -=lim 3 →0 h 0 (25+10h+h2)-25 h + 10h+h2 =lim →0 h =lim (10+h)=10 h-0 542 (1) f'(1) = lim- f(1+h)-f(1) h→0 h (log23, log39) はDに属する。 (2) t>0 であるから,不等式 1-3 + 2≤0の両辺 を掛けると t2-3t+2≤0 すなわち (t-1)(-2)≦0 これはt>0を満たす。 ゆえに 1≤t≤2 =lim h-0 {2(1+h)2+(1+h)}- (2.12+1) 5h+2h2 h =lim h-0 h =lim (5+2h)=5 0 (2) f'(3)=lim f(3h)-f(3) h-0 h =lim 110 {(3+h)3-3(3+h)}-(33-3-3) h 24h+9h²+h³ =lim h-0 h したがって 1≤t≤2 3y-1 2* (3)t=- とおくと, 2'03-10 から t>0 このとき,Dを表す不等式は 2 44 +13 すなわち t-3+/4/20 543 = lim (24+9h+h2)=24 h-0 (1) y = 0 (3) y'=3.2x+7=6x+7 (2)y=5 3'-1 ゆえに, (2) から, 1≦ -M2...... ①が成り 23 (4) y=-1/233x2=-2x2 立つ。 (5) y'=4x3-5.2x=4x10x
(103)10g3)取大胆に取を求めよ。 153810g102+10g 103 は無理数であることを証明せよ。 [高知大] [学習院大] 539 座標平面上で,不等式 2x+1 33-1 + 3y-1 2x ≦3 を満たす点(x, y) 全体の集合 をDとする。 (1) 点 (10g23,10g39) は D に属することを示せ。 (1) (2) Tt-3+ 数と対数関数 不等式 t-3+=0を満たす正の実数 tの範囲を求めよ。 を満たす正の実数の範囲を求めよ。 (3)Dを図示せよ。 [群馬大] ヒント 536 (2) 3を底として, 両辺の対数をとる。 538 背理法を用いる。 10g 10 2+10g103 が無理数でないと仮定して矛盾を導く。

回答

✨ ベストアンサー ✨

xはlogの中にはなく、logはxの一次関数の係数や定数項にしかありません。
ですから一次関数→直線となるわけです。

なるほど!!ありがとうございます!!!

この回答にコメントする
疑問は解決しましたか?