学年

教科

質問の種類

数学 高校生

3番について、 体積を求めるなら、π∫《Y1(x)-Y2(x)》²dxとなると思ったのですがなぜ回答のようになるのでしょうか? P.S. 書いた後に気づいたんですけど、余分な分を取り除く作業をしないように計算しているという事ですかね

● 5 回転体の体積 媒介変数型 曲線 C は媒介変数を用いて=t-sint, y=1-cost (0≦t≦2) と表されるとする.また, 曲線 C2 はx=t-sint, y=1+cost (0≦2m) と表されるとする。 (1) CC2は直線y=1に関して対称であることを示せ. (2) CC2 の交点の座標を求めよ. (3)とC2で囲まれた部分を軸のまわりに1回転してできる回転体の体積を求めよ。 (宇都宮大工) (x(t), y(t)) 曲線が媒介変数表示されている場合の回転体の体積 考え方は面積と同じ t=ti = で、右図の場合,Server-Sony (1) (1) dt(実際の計算は変数を t=to to dt にしておこなう)となる. 解答量 れらはx座標が等しくy座標の平均が (1) C. 上の (t-sint, 1-cost) と C2 上の (t-sint, 1+ cost) について,こ (1-cost)+(1+cost) -= 1 だから直線 P19 (t-sint, 1-cost) 2 y=1 に関して対称. よって C1 と C2 は y=1 に関して対称. dx dt -y=1 (2) x=t-sintのとき =1-cost≧0だから, tが増加するとも増加する。 P2(t-sint,1+cost) これと(1) より と C2 の交点は y=1上にあり,このとき cost=0 すなわち ← P1, P2 (x 座標が が増加すると π 3 t= 11/28 202である。交点は (1-1.1)(+1.1) 3 2 (3) Cy=y(x), C2 をy=y2(x) とする. π 3 << 21/2xの範囲で1cost<0だから y1(x)>y2(x)となる.また,(1)を用いると 1(x)-2(x)=(y₁ (x) + y 2 (x)} {y₁(x)-2(x)} =2{y1(x)-y2(x)} となるから、求める体積は 3 +1 37 +1 YA P₁(t) C₁ 1 0π -1 2 X 同じ) は右に動く.y=1に関す る対称性も考えると, P1=P2 な らば,その点のy座標は1. C2Cはサイクロイドである。サイ クロイドの概形は既知として,例 えば (2) は 「サイクロイドの概形 とy=1に関する対称性から, 交 点はy=1上にある」 としてもか まわないだろう. 2π 3匹+1 π P2(t) 2 √***³¹ñ{y₁(x)² — y²(x)²} dx=2xzz(y₁(x)=2(x)} dx =2π 2 3-21-2 3 {(1-cost) (1+cost)} 3 -dt=2x2(-2cost) (1-cost)dt 1 2 dx dt 2 sin 2t 2 π af*(-2cost+(1+cos2t))dt=2x|-2sint+t+ =2π 2 =2(+4) (解答は p.152) 3-2 2 π 交点に対応するtの値は, t=- π 3 π 2' 2" 2cos2t=1+cos2t

解決済み 回答数: 1
数学 高校生

なぜ増減表が必要なのですか?精講の部分には極値を求める必要があるとありますが、それも何に使うかわからないです。よろしくお願いします。

基礎問 220 第6章 積分法 120 回転体の体積(V) 曲線 y=(√x-√a)(x≧0,a>0)について,次の問いに答えよ。 (1) この曲線のグラフをかけ. (2)この曲線と y=a によって囲まれた部分を直線 y=aのまわりに 1回転してできる体積Vを求めよ. |精講 (1) 75の をもう一度読みかえしてみましょう.今回は,極値 を求める必要がありますから, y' は因数分解することになります。 それならば、このまま微分した方がよいでしょう. (2)今まで学んだ回転体の体積は,回転軸がx軸かy軸だけです.今回は, y=a です。 いったい、どのように考えればよいのでしょう. 目標は, 「回転 軸をx軸に重ねる」ことです. 解答 (1) x>0 のとき y' =2(√x-√a)·(√x - √ a) = x ½ (√√x -√a) < x = 0 のとき, y' の分母 = 0 となるので =1- √a √x a y"= ->0 2x√x IC 0 y' ... y a - 0 + a y a 0 > よって, グラフは下に凸で,増減は表のようにな +0 →∞ り, limy'=-∞, limy=∞ よりグラフは右図. a O 注 limy' を調べているのは,y' がx=0 で定義されていない,すな →+0 わち, 微分可能でないからです.y' が接線の傾きであることを考える と, limy'=-∞は接線がタテ型に近づいていくことを表していま x+0 す.だから, グラフにおいて点 (0,α) でy軸に接するようにかかれて いるのです.

解決済み 回答数: 1