学年

教科

質問の種類

数学 高校生

当たってるか見て欲しいです😭 あと空いてるところ教えて頂きたいです🙇‍♀️

2次方程式 学習した日 月日 ( 2次方程式 39 2次方程式の利用(2) 目標 2次方程式を利用していろいろな問題を解くことができる。 確認 1 大小2つの数がある。 その差は3で, 積が40であるという。 この2 一つの数を求めなさい。 沖縄カトリ 基本事 2次方程式 小さいほうの数をxとすると,大きいほうの数は+3 と表す <手順 ①一方の数 ことができる。 数をxを 積が40であることから, xx xxx+3) =40 ②数量間の 方程式を これを解くと, x= 5 +3-400 ③ 2次方程 (5)(x+8 =0 ④求めた ている えとする x= |-8 x=5のとき,大きいほうの数は5+3=8, x=-8のとき, 大きい ほうの数は-8+3=-5 これらは問題に適している。 よって求める2つの数は と と (小さい数) (大きい数) (小さい数) (大きい数) 練習② 次の問いに答えなさい。 (1) 大小2つの数がある。 その差は9で積が52 である。 小さいほうの数を求めなさい。 小さい数の、大きい数x+9 (2) 横が縦よりも2cm長く, 面 長方形の縦の長さを求めなさい xx(x+9)=52 x+90-52=0 (x+13)(xx-4)=0 X=4. X=-13 小さい数 X=-13. (3) ある数とそのある数を2乗した数との和は 72です。 ある数を求めなさい。 ある数のとおいて、 x+x72 878-92-0 (x+9)(0−8) 20 N=-9.8 (4) 連続する2つの整数があり した数の和は85になるこ

未解決 回答数: 0
数学 高校生

この問題を解く時にkf+g=0を使うらしいのですが、なぜ片方の式にしか文字(今回だとk)がつかないのですか?

「基本例 812直線の交点を通る直線 2直線x+y-4=0 ...... ①, 2x-y+1=0 ...... たす直線の方程式をそれぞれ求めよ。 (1) 点 (1,2)を通る 00000 ②の交点を通り。 次の条件を満 (2) 直線x+2y+2=0 に平行 基本8 指針 2直線 ①,②の交点を通る直線の方程式として、次の方程式 ③を考える。 k(x+y-4)+2x-y+1=0 (々は定数) (1) 直線③が点(-1,2)を通るとして,kの値を決定する。 (2)平行条件ab2-a2b1=0 を利用するために, ③ を x, yについて整理する。 CHART 2直線f=0g=0の交点を通る直線 kf+g=0 を利用 は定数とする。 方程式 x+y-4)+2x-y+1=0 ...... ③ 2直線①②の交点を通る直線 を表す。 (1) 直線③が点 (-1, 2) を通るか ら -3k-3=0 すなわち k=-1 これを③に代入して -(x+y-4)+2x-y+1=0 すなわち x-2y+5=0 ① (-1,2) (2)③をxyについて整理して (k+2)x+(k-1)y-4k+1=0 直線 ③ が直線x+2y+2=0に平行であるための条件は (k+2) 2-(k-1)-1=0 よって k=-5 これを③に代入して -5(x+y-4)+2x-y+1=0 すなわち x+2y-7=0 別解として, 2直線の交 点の座標を求める方法 もあるが、 左の解法は今 後、重要な手法となる (p.168 例題 106 参照)。 検討 与えられた2直線は平 行でないことがすぐに わかるから確かに交 わる。 しかし, 交わる かどうかが不明である 2直線 = 0, g=0の 場合, k+g=0の形 から求めるには,2直 線が交わる条件も必ず 求めておかなければな らない。 ③表す図形が, [1] 2直線 ①②の交点を通る [2] 直線である ことを示す。 [1] 2直線の傾きが異なるから 2直線は1点で交わる。 その交点(x, y) は,x+y-4=0. 2x+1=0を同時に満たすから,kの値に関係なく, k(x+yo-4)+2x+1=0が成り 立ち, ③は2直線 ①②の交点を通る。 [2] ③ を xyについて整理すると (k+2)x+(k-1)y-4k+1=0 k+2=0, k-1=0を同時に満たすkの値は存在しないから,③は直線である。 なお、③は,kの値を変えることで, 2直線 ①②の交点を通るいろいろな直線を表すが、 ①だ けは表さない。 練習 2直線x+5y-7=0, 2x-y-4=0 の交点を通り, 次の条件を満たす直線の方程式 81 をそれぞれ求めよ。 (1) 点(-3,5)を通る (2) 直線x+4y-60に (ア) 平行 (イ) 垂直 133

未解決 回答数: 1
数学 高校生

数1の一次不等式の問題⑴です。a-1じゃなくてaで考えてないのはなぜですか?aで考えてもいけますか?

重要 例題 38 文字係数の1次不等式 (1) 不等式a(x+1)>x+αを解け。 ただし, αは定数とする。 0000 (2) 不等式 ax<4-2x<2xの解が1<x<4であるとき, 定数αの値を求めよ。 [(2) 類 駒澤大] 基本 34 重要 指針 文字を含む1次不等式(Ax> B, Ax<B など)を解くときは,次のことに注意。 ・A=0のときは,両辺を4で割ることができない。 一般に、「0」で割る」 •A0 のときは、両辺を4で割ると不等号の向きが変わる。いうことは考えない (1) (a-1)x>a(a-1) と変形し, a-1>0, a-1=0, a-1<0の各場合に分けて ax<4-2x ...... A (2) ax<4-2x<2x は連立不等式 と同じ意味。 4-2x<2x B まず,Bを解く。 その解とAの解の共通範囲が1<x<4となることが条件。 CHART 文字係数の不等式 割る数の符号に注意 0で割るのはダメ (1) 与式から (a-1)x>a(a-1 ...... ①まず, Ax>Bの形に [1] α-1>0 すなわちα>1のとき x>a 解答 [2] α-1=0 すなわち α=1のとき これを満たすxの値はない。 [3] α-1 <0 すなわち α <1のとき 「α>1のとき x>a, よって (2) 4-2r a=1のとき 解はない, a<1のとき x <a ①は 0.x>0 sl>S ① x<a>x ①の両辺をα-1 (>0 で割る。 不等号の向 変わらない。 <0> 0 は成り立たない 負の数で割ると、不 の向きが変わる。 検討チ

未解決 回答数: 1
数学 高校生

マーカーを引いた部分がよく分かりません 詳しく教えていただけると有難いです💦

基礎問 68 第3章 いろいろな関数 40 逆関数 f(x)=ax-2-1 (a>0.22)とするとき、次の問いに答えよ。 ((1) y=f(x)の逆関数 y=f(x) を求めよ。 エーエ (2) 曲線 C:y=f(x) と曲線 C2y=f-' (z) が異なる2点で交わる ようなαの値の範囲を求めよ. (3) C1, C2 の交点のx座標の差が2であるとき, αの値を求めよ。 精講 〈逆関数の求め方〉 y=f(x) の逆関数を求めるには,この式を x=(yの式)と変形し,xとyを入れかえればよい 〈逆関数のもつ性質> Ⅰ. もとの関数と逆関数で, 定義域と値域が入れかわる Ⅱ. もとの関数と逆関数のグラフは,直線 y=x に関して対称になる 逆関数に関する知識としてはこの3つで十分ですが,実際に問題を解くとき 〈逆関数のもつ性質〉を上手に活用することが必要です。この基礎問では,IIが ポイントになります。 解答 (1) y=√ax-2-1 とおくと, √ax-2=y+1 リーェに で交わる ry-f よって すな 範囲 求め そこ この (3) よって, y+1≧0 より, 値域はy≧-1 ここで,両辺を2乗して 大切!! ax-2=(y+1)2 . x=11 (y+1)²+² (y≥−1) a よって、f(x)=1/2(x+12+2/2/(x-1) a a 【定義域と値域は入れ かわる 注 「定義域を求めよ」 とはかいていないので, 「x≧-1」は不要と思う 人もいるかもしれませんが,xの値に対して」を決める規則が関数で すから、xの範囲, すなわち, 定義域が「すべての実数」でない限り は、そこまで含めて 「関数を求める」 と考えなければなりません. (2) y=f(x)とy=f(x)のグラフは,凹凸が異なり,かつ,直線 253

回答募集中 回答数: 0