学年

教科

質問の種類

数学 高校生

数1の二次方程式、写真のアの2行目の式の意味が分かりません。 イは複合同順のとこが何言ってるか分かりません。 ウは最後の2行が意味わかりません。 よろしくお願いします🙇

4/9x 12次方程式 方程式を解く (ア)の方程式 x2-3+2/2x=0 を解け. (イ) 連立方程式x+2y=-5,x'+xy+y2=16 を解け . (ウ)の4次方程式 3.5.344.2+5x+3=0は,t=x+ (摂南大工) (山梨学院大 経営情報, 改題) 1 とおけば,tの2次方程式[ I である. (中京大文系) に変形できる. 上記の4次方程式の解の最小値は| A b±√62-4ac 解の公式 2次方程式 ax2+bx+c=0(a≠0) の解は, x= 2a - b±√b2-ac 特に, 1次の係数が “偶数 (2倍の形)” である ax2+2bx+c=0の解は,x=- a 解の公式は2か所に散らばっているェを平方完成によって1か所にすることで導ける (p.30). (f(x)=g(x) f(x) の符号で場合分けするか, p.17 で述べた次の言い換えを使う. [g(x) ≧0 に着目] f(x)=g(x) 「g(x) 20かつf(x)=g(x)」 または 「g(x) ≧0 かつf(x)=-g(x)」 相反方程式 (ウ)のように,係数が左右対称な方程式を相反方程式と言う. 相反方程式は,両辺を 1 x2で割り, x+-=t とおいてt の方程式を導いて解くのが定石である. 解答 x (ア)|x2-3|=-2√2のとき,左辺≧0 なので, r≦0 のもとで x²-3=-2√2x x²-3=2√2x つまり2+2/2x3=0と2√2x3=0 を解けばよい. x0 を満たすものを求めて, x=-√2-√5/√2-√5 (イ) 第1式から,x=-2y-5・・・・・① であり, 第2式に代入して (-2y-5)2+(-2y-5)y+y2=16 . 3y2+15y+9=0 :y2+5y+3=0 -5±√13 よって,y= であり,①に代入して, x=千 13 (複号同順) 2 ←前文で述べた言い換えを使った. 2/20 を忘れないように. ←係数にルートが入っていても解 の公式は使える. 等式の条件は1文字を消去する のが原則. yの±とェの王において, 上側 ←同士と下側同士が対応する. 方程式の左辺はx=0のとき3で 0にはならない。 |-44=0 (ウ) x=0は解ではないから, 方程式の両辺を (0) で割って, .. 3x2+5x-44+ + 5 3 0 x² IC 3{(x+1)-2} +5(x+2)-44- (t+5)(3t-10)=0 (+2)+(+税) 44=0 .. 3t+5t-50=0 it=-5, 10 3 xtの符号は一致するので,最小の解はt=-5を満たす. + -5-21 り,x2+5x+1=0 この小さい方の解が答えで,= 2 1 演習題(解答は p.54) -=-5によ IC 両辺を倍して整理した. (ア) 連立方程式|x+2+y=1,y2-2x=6を解け (大阪工大 情報科学 ) (イ) 4次方程式-6x2+18 +9=0 ① の解を求める. x=0は①の解でな いから,t=xt によっておき換えることにより, tについての2次方程式 I (ア) 1文字消去.

解決済み 回答数: 1
数学 高校生

(2)の下線部がわかりません。どなたか教えてください🙇‍♀️

満た (1) 2次方程式 x2-2x+3=0 の2つの解をα,βとするとき,次の2数を解とする 2次方程式 を1つ作れ。 PR ②47 (ア) α+1,β+1 (イ) 1 1 a' B (ウ) 3,3 ②p, gを0でない実数の定数とし、 2次方程式 2x2+px+2g=0 の解をα,βとする。 2次方 程式 x2+qx+p=0 の2つの解がα+ β と αβであるとき,, gの値を求めよ。 (1) 2次方程式 x2-2x+3=0 において,解と係数の関係によ り a+β=2, aβ=3 (ア) (a+1)+(β+1)=(a+β)+2 =2+2=4 (a+1) (B+1)=aß+(a+β)+1 =3+2+1=6 よって, α+1, β +1 を解とする2次方程式の1つは + x²-4x+6=0 1 1 a+B 2 11 1 1 (イ) a B 3' aẞ a B aβ 3 1 よって, を解とする2次方程式の1つは a' B 4 x²-- 両辺に3を掛けて 3x²-2x+1=0 ←2数 α+1,β+1 の 和と積を求める。 x²-(和)x+(積) = 0 2数 1/ 1/3の和と積 a を求める。 B 各係数を整数にする。 2章 PR 7.13=1 =0 しても (ウ) '+3=(a+β)3-3aß(a+β) =23-3.3.2=-10 α''=(ab)=33=27 よって, 3, B3 を解とする2次方程式の1つは x2+10x+27=0 (2) 2次方程式 2x2+px+2g=0 において, 解と係数の関係 により a+B=-P 2 ①, ab=a 2次方程式x'+x+p=0の解がα + β, aβ であるから, 2数α3, 3 の和と積 を求める。 a 2つの解の和と積。 4つの式 ① ~ ④から α, βを消去 ⑤ 解と係数の関係により (a+B)+αB=- (a+B)aẞ=p ③に代入して 6+α=-g 2 すなわち p=4q ① ② を④に代入して すなわち pq=-2p ...... 0 であるから,⑥ より 9=-2 ⑤に代入して p=-8 これらはカ≠0, g≠0 を満たす。 以上から、 求めるp, q の値は p=-8,g=-2 p(q+2)=0 条件を確認する。

解決済み 回答数: 1
数学 高校生

xについての二次方程式までは式を整理できたのですが、その後に「この二次方程式が実数解を持つための条件は〜」の発想にいくのが、次にこの問題を解くときに思い浮かべられる自信がありません。どういった考え方をしたら次解くときに実数解を持つ条件を思い浮かべられるようになりますか。 そ... 続きを読む

重要 例題 1222 変数関数の最大・最小 (4) 203 00000 実数x,yが x2+y2=2 を満たすとき,2x+yのとりうる値の最大値と最小値を | 求めよ。 また, そのときのx,yの値を求めよ。 [類 南山大 ] 基本 101 条件式は文字を減らす方針でいきたいが、条件式x2+y2=2から文 字を減らしても, 2x+yはx,yについての1次式であるからうま くいかない。 そこで, 2x+y=t とおき,tのとりうる値の範囲を調べることで, 最大値と最小値を求める。 -> 2x+y=t を y=t-2x と変形し, x2+y2=2に代入してyを消 去するとx2+(t-2x)=2となり,xの2次方程式になる。 xは実数であるから,この方程式が実数解をもつ条件を利用する。 実数解をもつ⇔D≧0 の利用。 見方をかつ える 3 3章 13 1 2次不等式 CHART 最大・最小=t とおいて、 実数解をもつ条件利用 2x+y=t とおくと y=t-2x ...... (1) 解答 これを x2+y2=2に代入すると x2+(t-2x)2=2 整理すると COPIQE このxについての2次方程式② が実数解をもつための 条件は、②の判別式をDとすると D≧0 5x2 -4tx+t2-2=0 (2) ここで 4 D=(-2t)2-5(t2-2)=-(t2-10) D≧0 から t2-10≤0 >> 参考 実数a, b, x, y に ついて,次の不等式が成り 立つ(コーシー・シュワル ツの不等式)。 (ax+by)²≤(a²+b²)(x²+y²) [等号成立は ay=bx] この不等式に a=2,b=1 を代入することで解くこと もできる。 028- これを解いて -√10 ≤t≤√10 t=±√10 のとき, D=0 で, ② は重解 x=-- -4t 2t = 2.5 5 を もつ。 =±√10 のとき x=± 2/10 5 のとき, ② は t=±√10 5x2+4√10x+8=0 よって (√5x=2√2) 20 またはBA ①から y=± √10 (複号同順) ゆえに 5 2√2 2/10 x=± 210 よって V 10 -=± √5 5 x= y= のとき最大値10 5 5 ①からy= 10 5 2/10 √10 x=- y=- のとき最小値√10 (複号同順) また 5 5 としてもよい。

解決済み 回答数: 1