学年

教科

質問の種類

数学 高校生

なぜ赤で囲まれたところでは、.... <(1/3)^n(3-a1)なのに回答では<=になっているのか? ChatGPTに聞いてみたけどよくわかりませんでした。教えて欲しいです

重要 30 漸化式と極限 (5) ・・・はさみうちの原理 00000 数列 (a) が 03.42=1+1+α (n=1, 2, 3, ......) を満たすとき (1) 03を証明せよ。 ((3) 数列{an) の極限値を求めよ。 指針 (2) 3-** <1/12 (3-2)を証明せよ。 [ 神戸大] p.34 基本事項 基本 21 ① すべての自然数nについての成立を示す数学的帰納法の利用。 (2)(1)の結果、すなわち、3-0であることを利用。 (3) 漸化式変形して、一般項αをの式で表すのは難しい。そこで、(2)で示した 不等式を利用し、はさみうちの原理を使って数列 (3-α)の極限を求める。 はさみうちの原理 すべてのnについて Disastのとき limp = limg =α ならば なお,p.54.55の補足事項も参照。 lima-a 53 CHART 求めにくい極限 不等式利用ではさみうち 2章 数列の極限 解答 (1) 0<an<3 ...... ① とする。 [1] n=1のとき,与えられた条件から①は成り立つ。 [2] n=kのとき,①が成り立つと仮定すると 0<ak <3 nk+1のときを考えると, 0<ak<3であるから ak+1 1+1+ak >2>0 ak+1=1+1+ak <1+√1+3=3 したがって 0<ak+1 <3 < よって, n=k+1のときにも①は成り立つ。 [1], [2] から, すべての自然数nについて ①は成り立つ。 (2)3-αn+1=2√1+an = 3-an 2+√1+an </13- <1/3 (3-4) \n-1 lim (3)(12) から, n≧2のとき no 3 1\n-1 したがって 03-am = (1/3) =(1/2) (301) (3-α1) = 0 であるから lim(3-an)=0 N1X liman=3 n→∞ 数学的帰納法による。 <0<a<3 <<αから√1+ax >1 <3から√1+αk <2 3-a>0であり,an>0 から an> n≧2のとき, (2) から 3-and- an< (3-an-1) (1/2)(3)……… \n-1 (1/2)(3) 3 =2, n=2のとき a2= 2/2 am1-1/2 を満たす数列{an)について すべての自然数nに対してan>1であることを証明せよ。 「類 関西

解決済み 回答数: 1
数学 高校生

なぜこの問題で、母集団にある2つの3を区別するのか分かりません。どなたか解説お願いします🙇‍♀️

551 (2) 集団から復元抽出によって得られた大きさ16の無 | 母集団の変量xが右の分布をなしている。この母 基本の 例題 て、 84 標 標準偏差 (1) 母集団 {1,2,3,3}から復元抽出された大きさ2の標本 (Xi, X2)につい その標本平均Xの確率分布を求めよ。 00000 x 1 度数 23 計 11 8 6 25 「作為標本をX1,X2, X16 とするとき,その標 本平均Xの期待値 E ( X ) と標準偏差(X) を求めよ。 をとる確率を調べる。 P.547 基本事項 3, p.548 基本事項 餅 (1) X1,X2のとりうる値とそのときのXの値を表にまとめ, Xのとりうる値と各値 (2) まず, 母平均 m と母標準偏差 o を求める。 そして、 次の公式を利用する。 母平均m, 母標準偏差の母集団から大きさんの無作為標本を抽出するとき 標本 平均の 期待値 E(X)=m,標準偏差α(X)=n 2 2章 1 母集団と標本 X+X2 (1)=- 2 解答 P 3-2 215 115060 よって, Xの確率分布は次の表のようになる。 X 1 U の値を表にすると, 右のようになる。 X21 1 X 2 3 3 2 5 16 416 52 4 16 0+8.0~) \1 1 3 計 2 1 3-2 2 32 2 2 2 5-2 5-2 3 2 11 (2)母平均と母標準偏差は 8 m=1. +2・・ +3・ 25 25 65 45 9 3 2 5-2 5-2 3 3 25 25 5 10000 3 3 3 11 8 6 (1) 母集団にある2つの3 9 0= 12. +22. +32. 18.0 25 25 25 を区別して、表にまとめる とよい。 16 4 = V 25 5 したがって, Xの期待値と標準偏差は 9 ' 5 0 E(X)= σ(X)= =m= 16 15 E(X)=m, o(X)= 0 (2)母集団の変量xが右の分布をなしている。この 母集団から復元抽出によって得られた大きさ25の 練習 (1) 上の例題 (1) において, 非復元抽出の場合,Xの確率分布を求めよ。 84 28 x 1 2 3 4 計 度数 2 2 3 3 10 無作為標本を X1,X2,. ・・・・・・, X25 とするとき, その 標本平均Xの期待値 E (X) と標準偏差(X) を求めよ。 p.562 EX52

解決済み 回答数: 1