学年

教科

質問の種類

数学 高校生

微分係数が存在するかしないかって 右側極限の微分と左側極限の微分が合うか合わないかのみによるという理解でよいですか?

連続で [+] (②) 連続 T 分 ■数 60 関数の連続性と微分可能性 /関数f(x)=x^2/x-2|はx=2において連続であるか、 微分可能であるかを調べ p.106 基本事項 62 検討 [例題] f(x)がx=αで連続limf(x)=f(α) が成り立つ f(x) が x=αで微分可能微分係数 lima+h)-S(α) h オー lim f(x) X 2+0 これらの極限について調べる。 f(x)はx=2の前後で式が異なるから、例えば連続性については、右側極限 20, 左側極限x2-0 を考え,それらが一致するかどうかを調べる。 =limx2(x-2)=0 x-240 lim f(x) x-2-0 =lim{-x2(x-2)}=0 x2-0 また, f(2)=0 であるから lim f(x)=f(2) X-2 よって, f(x)はx=2で連続である。 次に = lim h+0 ƒ(2+h)-f(2) h lim h-0 f(2+h)-f(2) h =lim h→+0 h→+0 =lim(2+h)=4 ya lim h-0 (2+h)³h-0 h (2+h)²(−h)-0 h =lim{-(2+h)"}=-4 h-0 h→+0とん → 0 のときの極限値が異なるから, f' (2) は存在しない。 すなわち, f(x)はx=2で微分可能 ではない。 微分可能連続の利用 f(x)がx=αで微分可能x=α で連続 y=f(x) (2) f(x)= X 0 107 00000 F p.97 基本事項■ が成り立つ。 よって、上の例題のような問題では,微分可能性から 先に調べてもよい(「微分可能」がわかれば、極限を調べなくても 「連続である」という結論を出すことができる)。 また、⑩の対偶「f(x)がx=4で連続でない⇒xaで微分 「可能でない」 も成り立つ。 x 1+2 + が存在する。 4A= を用いて、絶対値をはず A (A20) -A (A<0) ◄f(2+h)-(2+h)²|h|| ん→ +0のとき >0 ん→-0のとき <0 に注意して、 絶対値をは ずす。 練習 次の関数は, x=0 において連続であるか, 微分可能であるかを調べよ。 260 (x=0) (1) f(x)=|x|sinx (x=0) 微分可能 [(1) 類 島根大〕 p.115 EX 48 3 章

回答募集中 回答数: 0
数学 高校生

(ii)において全問で3次関数の接線L1を導出して、それとは別の等しい傾きの接線L2を考え、L1と囲まれた面積をS1、L2とはS2とするとS1=S2となるのですが傾きが等しい接線だからでしょうか。 解答では傾きを平方完成してt=1で対称であるためとされていますが解いていて思... 続きを読む

そして,l と傾きが等しい C”の接線が存在するのはX tキー+2 すなわち t≠1 のときである。 &」 と傾きが等しい ” の接線のうち, & でない方の接線をl2とし&と C” とで囲まれた図形の面積を S1,l2 と C" とで囲まれた図形の面積を S2 と すると,Sのグラフと l の傾きを表すグラフがともにt=1に関して対称 であることから, S1 = S2 であることがわかる。 となるので したがって, S1+S2 = 1 であるとき 3 S=S2=1/ 4 ゆえに 27(1-t)4 (1-t)4 = 16 4 1-t=± t= である。 81 2 5 2 3 3 S2 3 1 S1 iQ C" -l₁ -l₂ 8.0=0.1×8.0= -t + 2 -2t + 3 (8253272609 よって, l1 の傾きは 2 3 {(1) ² - 2.-3} = 3 - (-32) = 32 9 This HAR JO (100%* 2542120-3.0- = 88.0 × 8.0 = (2,02720)1-30=120-20 2806 S1のグラフ S₁ = l1 の傾きm を表すグラフ m=3t2-6t-9 27(1-t)4 4 =3(t-1)2-12 はどちらも t = 1 に関して 対称である。 8.0-Y 20.1 107.5875 AMAS 34 (7.02 YA ■3(t2-2t-3) にt=1/13 を 代入する。 3t2-2t-3) に t= = 1 を代入してもよい。

回答募集中 回答数: 0
数学 高校生

数学2B / 数列 イ の求め方がよくわかりません。 教えて頂きたいです🙇‍♀️

25 2 1.² 40x tod 2 5 5025 36x3 70 数学ⅡI・数学B 第3問~第5問は、いずれか2問を選択し、 解答しなさい。 第4問 180 50 (1) 太郎さんは次の操作を考えた。 ESP 操作 1 12 2種類のラーメンのスープが容器 A, B に分けて入っている。 [はじめの状態] 240×100 容器 A : 塩分濃度 1.6%のスープ 240 容器B: 塩分濃度 1.2% のスープ 360g) 太郎さんと花子さんは容器 A,Bのスープを使って, スープの塩分濃度を調整 しようとしている。 80.0 20.0 5025 96. -792 +200×100colrav 50% 容器 A から40gのスープを取り出して捨て、 次に, 容器 B から40gのスー プを取り出して容器Aに入れる。 このとき, 容器Aのスープの塩分濃度が 209.0 80$.028060 均一になるようによくかき混ぜる。 47³-32²2²-x) 98²-3x-7 (選択問題)(配点20) 1985.0 bet8.0 1018.0 ASTS.GO2.0 [はじめの状態] の容器 Aのスープ 240gに含まれている食塩の量は ア ANT CERD 2866 0DIO SUB.0 81.0 1061.0 $8310 A 8 19 96 O (2) イ イ であり、操作1を1回だけ行った後の容器Aのスープの塩分濃度は である。 なお, 操作1を1回行うたびに容器Bから40gのスープを取り出すので 回までである。 操作を行うことができる回数は 17 2 01 07 の解答群 200x1.6 1696 A 50810105005025 25 OCTLO 1840.0 の解答群 の解答群 200x 6 TEL5 ①8 1.6 100 1001.3 3 5 ELO SETAO AO CITI 2 1.2 +本日× 100-5 4 3 ②9 - 42 - 23. 15 12 24001.6 5700 = 3.6+2²2/10=3.68g 24 50 (3) 10 96 25 [1 ア 7 40 11 12 1.6 02 12 19.2 % 96 193 25 (数学ⅡⅠ・数学B 第4問は次ページに続く。)

回答募集中 回答数: 0
数学 高校生

201.1 増減を調べよ、という問いはこのようにグラフで示すだけでは記述不足ですよね??

基本例題 201/3次関数の増減,極値 次の関数の増減を調べよ。 また,極値を求めよ。 (1) y=x3+3x²9x 解答 (1) y′=3x²+6x-9 p.315 基本事項 ①.② 指針▷関数の増減・極値の問題ではy'の符号を調べる(増減表を作る)。 ①導関数yを求め, 方程式y'=0 の実数解を求める。 ・・・ Z 2② ① で求めたxの値の前後で,導関数y'の符号の変化を調べる。 と塩Bにおける」 CHART 増減極値y'の符号の変化を調べる 増減表の作成 SE GARO th =3(x2+2x-3) =3(x+3)(x-1) ① y=0 とすると x y +: 7 (2) y′=-x2+2x-1=-(x-1)2 y'=0とすると x=1 yの増減表は右のようになる。 よって、常に単調に減少する。 したがって,極値をもたない。 - 3 20 |極大| 27 (2)y=-1/23 x3+x2-x+2 x=-3, 1 yの増減表は右のようになる。 よって 区間 x≦-3, 1≦xで単調に増加, 区間 x y' DÉLY y - FRETCOV0000 |極小| -5 また, x=-3で極大値 27, x=1で極小値-5をとる。 注意 (*) 増加・減少のxの値の範囲を答えるときは,区 間に端点を含めて答えてよい。なぜなら,例えば,v=-3 のとき,u<vならばf(u) <f(v)の関係が成り立つからで ある。 1... 0 + 1053 y'の符号を調べるのに,次のよう雄 身 単なグラフをかくとよい。 (1) (1) y'=3(x+3)(x-1) HOW V -3 1 0 (*) (2) y'=-(x-1) 2 + X $221507 [参考] yのグラフは次のようになる。 YA 1(0)13 (2) 18 1

回答募集中 回答数: 0
数学 高校生

確率の問題です! (1)の解説がわからないです! どうして24通りになるのですか?

354 条件付き確率の計算 (2) 基本例題 58 00000 3個のさいころを同時に投げ, 出た目の最大値をX, 最小値をYとし、その差 X-V をZとする。 (1) Z=4 となる確率を求めよ。 〔類 センター試験 (2) Z=4 という条件のもとで, X = 5 となる条件付き確率を求めよ。 1307 指針 (1) 1≦X≦6, 1 ≦ ≧ 6 から, Z=4 となるのは, (X,Y) = 5,1),(6,2)のときである。 この2つの場合に分けて, Z=4 となる目の出方を数え上げる。 (2) Z4となる事象をA, X = 5 となる事象をBとすると, 求める確率は 条件付き P (B) である。 (1) n (A), n (A∩B) を求めているから, PA (B) = して計算するとよい。 3! 2! 解答 (1) Z=4 となるのは, (X,Y) = (5,1), (62) のときである。| Z=X-Y=4から [1] (x,y)=(51) のとき X=Y+4 このような3個のさいころの目の組を目の大きい方から 順にあげると,次のようになる。 X6 であるためには Y = 1 または Y=2 (5,5,1),(5,4,1),(5,3,1),(5,2,1),(5,1,1) + 3×3! + =24 3! 2! この場合の数は [2] (x,y)=(62) のとき [1] と同様にして, 目の組を調べると (6, 6, 2), (6, 5, 2). (6, 4, 2), (6, 3, 2), (6, 2, 2) この場合の数は 3! 2! + 3×3! + p.352 基本事項 3! 2! =24 以上から, Z=4 となる場合の数は 48 2 よって 求める確率は 63 9 (2) Z4となる事象をA, X = 5 となる事象をBとすると, 求める確率は 24+24=48 (通り) PA(B) = n(ANB) 24 1 n(A) 48 2 n(ANB) n(A) 組 (5,5,1)と組 (5.1.1)については じものを含む順列を利 同じものがない1個の飲 入る場所を選ぶと考えて、 3Cとしてもよい。 ◄ P.(B) = P(ACB)= P(A)

回答募集中 回答数: 0