学年

教科

質問の種類

数学 高校生

(1)の半径の差<中心間の距離<半径の和 が分かりません😭😭 中心間の距離<半径の和の方は分かるけど、半径の差<中心間の距離の方が分かりません。。質問がちょっとざっくりで申し訳ないんですが、教えてください🙏🙏!

422円の 2円 x'+y²-2x+4y=0 ………D, z°+y°+2x=1......② がある. 次の問いに答えよ. (1) ①,②は異なる2点で交わることを示せ. ¥21, ②の交点をP, Q とするとき,2点P,Qと点 (1,0)を通 |精講 る円の方程式を求めよ. 直線 PQ の方程式と弦PQの長さを求めよ. なんで?? (1)2円が異なる2点で交わる条件は 「半径の差 <中心間の距離 <半径の和」 です. 数学ⅠA57) (2) 38 の考え方を用いると, 2点P, Q を通る円は (x2+y²-2x+4y)+k(x2+y2+2x-1)=0 の形に表せます. (3)2点P,Qを通る直線も (2) と同様に (x2+y²-2x+4y)+k(x2+y'+2x-1)=0 ってい (S) と表せますが,直線を表すためには,x2,y2の項が消えなければならないの で,k=-1 と決まります.また,円の弦の長さを求めるときは, 2点間の距 離の公式ではなく, 点と直線の距離 (34) と三平方の定理を使います。 解答 (1) ①より (x-1)+(y+2)²=5 ∴. 中心 (1, 2), 半径 5 ②より (x+1)2+y2=2 ∴. 中心 (-1,0), 半径 √2 2匹1匹 中心間の距離=√2+2°=√8 <3=2+1<√5+√2 また, √5-√2 <3-1=2<√8 .. 半径の差<中心間の距離 < 半径の和 よって, 1, ②は異なる2点で交わる. (2) 2点P,Qを通るは ('+y²-2x+4y)+k(x²+y'+2x-1)=0 ...... ③ とおける.

解決済み 回答数: 2
数学 高校生

[1]の、a5=1、b5=1とありますが、 どうしてr=1を代入しただけでa2やa3〜〜ではなく、 a5、b5となっているかを教えてください!!🙇‍♀️

372 重要 例題 14 等差数列と等比数列の共通項 00000 〔神戸薬大] 初項1の等差数列{an} と初項1の等比数列{bn} が as=b3, a=ba, st を満たすとき,a2, by の値を求めよ。 CHART & SOLUTION 等差数列と等比数列の共通項 条件から、初項、公差d, 公比の関係式を導く 基本1 数列{an}, {bm} ともに初項は与えられているから,{an} の公差d,{6}の公比が の関係式 を導く。 導いた関係式には2やが含まれるからを消去するのは困難である。 まずは dを消去してrを求めよう。 解答 数列 {an} の公差をd, 数列{bm} の公比をとすると an=1+(n-1)d, bn=1zn-1 ① よって ゆえに よって ag=bs から 1+2d=2 a4 = b4 から ②③から 1+3d=3 3(2-1)=2(3-1) 2-32+1=0 (r-1)(2r2-r-1)=0 (r-1)2(2r+1)=0 1 したがって r=1, *S 未 dを消去する方針。 ②から6d=3(-1) ③から6d=2(-1) 22-r-1 =(x-1)(2x+1) 2 [1] r=1 のとき ② から d = 0 このとき,① から αs=1, bs=1 ? 240.1 [2]=-1/2 のとき ② から d=-- 元利合計Sは、 これは, α5≠bs を満たさないから、不適。 3 8 このとき ①から 8 a=1+(5-1)(-3)--. -(-)-16 b5 = (1)円 和で すべてのnに対して an=1,6n=1 -αn=1+(n-1)( 2 \n-1 これは, as≠65 を満たしている。 [1], [2] から, 求める az, b2 の値は a2=0, b2= b2=-- 1 2 x10.1++2 10.110.1

解決済み 回答数: 1
数学 高校生

下線部において、dが省略される式はどのように出したのか過程を教えてください!! 分かる方ぜひぜひお願いします🙇‍♀️

372 要 例題 14 等差数列と等比数列の共通項 初項1の等差数列{an} と初項1の等比数列{bn} が a3=bs, a=ba, を満たすとき αz, b2 の値を求めよ。 CHART & SOLUTION 等差数列と等比数列の共通項 00000 ash [神戸薬大] 基本 1.9 条件から、初項、公差 d, 公比rの関係式を導く 数列 {an}, {bm} ともに初項は与えられているから, {an} の公差d,{6}の公比rの関係式 を導く。導いた関係式にはやが含まれるからを消去するのは困難である。まずは dを消去してrを求めよう。 解答 10.1X001136 数列{a} の公差をd, 数列 {bn} の公比をとすると an=1+(n-1)d, bn=1.yn-1 ・① ag=bg から 1+2d=2 a4=64 から 1+3d=3 ③ ② ③ から 3(2-1)=2(z3-1) よって 23-3r2+1=0 ゆえに (r-1)(2r2-r-1)=0 よって (n-1)2(2x+1)=0 したがって 1 r=1, 2 末 [1] r=1のとき ② から d=0 5000+ このとき, ①から α5=1,65=1 x10.J これは, α5≠bsを満たさないから、不適。 [2]=-1/2 のとき ② から d=- 3 ・円 8 このとき, ①から (円) 3 as=1+(5-1)(-1/2)=-1/2,65 -(-1)-16 = 2' 2 これは, as≠bs を満たしている。 [1], [2] から, 求める as, by の値は42=2, b2= 62 1 8' 2 x engl dを消去する方針。 ②からd=3 ( ③から6d=2 ← 22-r-1 =(r-1)(2r+1) すべてのに対し an=1,6=1 ←an=1+(n-1)(

解決済み 回答数: 1
数学 高校生

複素数平面の問題なのですが、(3)で4P3などで求めているのは何故でしょうか?4C3では駄目な理由を教えて頂きたいです。

軸上に あるから =, 総合 α=sin- π +icos 100 とする。 (1) 複素数αを極形式で表せ。 ただし, 偏角0 の範囲は00<2とする。 (2) 数学C245 2個のさいころを同時に投げて出た目をk, lとするとき = 1 となる確率を求めよ。 複素数である確率を求めよ。 (3)3個のさいころを同時に投げて出た目を k l m とするとき, ah, a, a” が異なる3つの 2 π πで、 10 5 5 2 01/03x<2であるから ※極形式は T π 2 - 2 5 [山口] →本冊 数学C例題107 108 Cosshの←一般に、OBA F = sin(x)+icos (12/31) =conf/x+isin/3d 2 TC とき sinβ+icos β の = cos(-8)+isin(-8) (2) kl は整数であるから 2 kl 5 -(cosx+isinx)=cos 2+isin 24 =COS 2kl 5 2kl 5 よって,=1となるのは, nを整数として 2kl ←ド・モアブルの定理。 ここで, 2個のさいころの目の出方の総数は されるとき,つまりkl=5nから, klが5の倍数のときである。 5 π=2nと表 ←1=cos2n+isin2na ( n は整数) 62通り が5の倍数にならないのは、ん、1がともに5の倍数でないと余事象の確率を利用す きであり,その目の出方は 52 通り したがって、求める確率は 52 11 1- = 62 36 (3)3個のさいころの目の出方の総数は 2 -л+isin- acos 3 12 s 5 なんで6かけている?lis る。 k, lのとりうる値は, どちらも1,2,3,4,5, 6のうちいずれか。 この 6つの目のうち,5の倍 数は5のみ。 総合 2 π =COS 137) = cos 27+isin 127 ・π =COS 5 nisin 2 =a 5 また, arga= -πであり, argum= 25 ( は整数)から y 1 a=a a² 8 arga²=л, arga³=л, arga= -π, argo=2π -1 /x 0 a³ a 6 5 0<arga=arga<arga²<arga³<arga¹<arga³=2 ゆえに,α'(=α),2,3,α^,α はすべて異なる値である。 よって,ak, a', am が異なる3つの複素数となるのは,k, L, mがすべて異なり,かつ1と6を同時に含まない場合である。 それは次の [1][2] の場合に分けられる。 [1]1も6も含まれない場合 (*) (7. 1. 2) klmは2, 3, 4, 5 のいずれかの値をとるから、この場合1または6が, の数は 4P3=4・3・2=24(通り) [2]k,l,mに 1 6 のいずれか一方が含まれる場合 k l m のいずれか1つが1または6の値をとり 残りの2 つは2,3,4,5のいずれかの値をとるから,この場合の数は 3・2・4P2(*)=3・2・12=72(通り) かくりつ 復習 Chじゃない?? のどこにくるかで Ct 通 り 1または6のどちら かで2通り、残りの2か 所に 2, 3, 4, 5から2つ を選んで並べるからPz 通り。

未解決 回答数: 1
数学 高校生

青チャートIA、場合の数と確率について質問があります。下に写真を貼り付けたのですが、なぜ同じような問題でもこのように解き方が変わってしまうのでしょうか。なるべくわかりやすく教えてください🙇🏻‍♀️よろしくお願いします。

378 基本例 例題 30 最短経路の数 右の図のように,道路が碁盤の目のようになった街がある。 地点Aから地点Bまでの長さが最短の道を行くとき,次 の場合は何通りの道順があるか。 (1) 全部の道順 (2) 地点 Cを通る。 [類 東北大〕 ○ (3)地点Pは通らない。 (4) 地点Pも地点 Q も通らない。 + 基本27 AL 指針AからBへの最短経路は,右の図で 右進 または 上進する ことによって得られる。 右へ1区画進むことを,上へ1区 画進むことを↑ で表すとき,例えば, 右の図のような2つの まちがしが敗因 (3) 通行止め からのリスタート最短経路は 地点配置 赤の経路なら 青の経路なら -1--111-1-1 0000 111→11→1→→ で表される。 したがって, AからBへの最短経路は, 5個 16個の同じものを含む順列で与えられる。 (2) A → C, C→B と分けて考える。 積の法則を利用。 (3) (Pを通らない)=(全道順) (P を通る) で計算。 C A (4) すべての道順の集合をUPを通る道順の集合をP, Q を通る道順の集合をQと n(PnQ)=n(PUQ)=n(U)-n (PUQ) ド・モルガンの すると, 求めるのは つまり ここで つまり (PもQも通らない)=(全道順)-(PまたはQを通る) 個数定理 n(PUQ)=n(P)+n(Q)-n(PnQ) 法則 (P または Q を通る) = (P を通る) + (Q を通る) (PとQを通る) 右へ1区画進むことを→, 上へ1区画進むことを↑で表す。 解答 (1) 最短の道順は5個, 16個の順列で表されるから 11! 5!6! 11-10-9-8-7 5・4・3・2・1 462(通り) (2) A から Cまでの道順 CからBまでの道順はそれぞれ 組合せで考えてもよい。 次ページの別解参照。 AからCまでで 3! 8! -=3(通り), -=70(通り) 1!2! 4!4! →1個, 2個 CからBまでで よって, 求める道順は 3×70=210(通り) →4個 14個 5! 5! (3)Pを通る道順は × -=10×10=100 (通り) 2!3! 2!3! よって, 求める道順は 7! 3! (4) Q を通る道順は × 3!4! 1!2! 462-100=362 (通り) =35×3=105 (通り) (Pを通らない) =(全体)(Pを通る) PとQの両方を通る道順は 5! 3! =10×3=30(通り) 2!3! 1!2! ▼PからQに至る最短の 道順は1通りである。 よって, Pまたは Q を通る道順は ゆえに, 求める道順は 100+105-30=175 (通り) 462-175=287 (通り)

解決済み 回答数: 1
数学 高校生

青チャートIA、場合の数と確率について質問があります。下に写真を貼り付けたのですが、なぜ同じような問題でもこのように解き方が変わってしまうのでしょうか。なるべくわかりやすく教えてください🙇🏻‍♀️よろしくお願いします。

378 基本例 例題 30 最短経路の数 右の図のように,道路が碁盤の目のようになった街がある。 地点Aから地点Bまでの長さが最短の道を行くとき,次 の場合は何通りの道順があるか。 (1) 全部の道順 (2) 地点 Cを通る。 [類 東北大〕 ○ (3)地点Pは通らない。 (4) 地点Pも地点 Q も通らない。 + 基本27 AL 指針AからBへの最短経路は,右の図で 右進 または 上進する ことによって得られる。 右へ1区画進むことを,上へ1区 画進むことを↑ で表すとき,例えば, 右の図のような2つの まちがしが敗因 (3) 通行止め からのリスタート最短経路は 地点配置 赤の経路なら 青の経路なら -1--111-1-1 0000 111→11→1→→ で表される。 したがって, AからBへの最短経路は, 5個 16個の同じものを含む順列で与えられる。 (2) A → C, C→B と分けて考える。 積の法則を利用。 (3) (Pを通らない)=(全道順) (P を通る) で計算。 C A (4) すべての道順の集合をUPを通る道順の集合をP, Q を通る道順の集合をQと n(PnQ)=n(PUQ)=n(U)-n (PUQ) ド・モルガンの すると, 求めるのは つまり ここで つまり (PもQも通らない)=(全道順)-(PまたはQを通る) 個数定理 n(PUQ)=n(P)+n(Q)-n(PnQ) 法則 (P または Q を通る) = (P を通る) + (Q を通る) (PとQを通る) 右へ1区画進むことを→, 上へ1区画進むことを↑で表す。 解答 (1) 最短の道順は5個, 16個の順列で表されるから 11! 5!6! 11-10-9-8-7 5・4・3・2・1 462(通り) (2) A から Cまでの道順 CからBまでの道順はそれぞれ 組合せで考えてもよい。 次ページの別解参照。 AからCまでで 3! 8! -=3(通り), -=70(通り) 1!2! 4!4! →1個, 2個 CからBまでで よって, 求める道順は 3×70=210(通り) →4個 14個 5! 5! (3)Pを通る道順は × -=10×10=100 (通り) 2!3! 2!3! よって, 求める道順は 7! 3! (4) Q を通る道順は × 3!4! 1!2! 462-100=362 (通り) =35×3=105 (通り) (Pを通らない) =(全体)(Pを通る) PとQの両方を通る道順は 5! 3! =10×3=30(通り) 2!3! 1!2! ▼PからQに至る最短の 道順は1通りである。 よって, Pまたは Q を通る道順は ゆえに, 求める道順は 100+105-30=175 (通り) 462-175=287 (通り)

未解決 回答数: 1